半干旱地区草地生态系统的潜水依赖性模拟

孙青言¹,陆垂裕¹,栾清华^{1,2},李 慧¹,汪 林¹

(1. 中国水利水电科学研究院 流域水循环模拟与调控国家重点实验室,北京 100038;2. 河北工程大学水电学院,邯郸 056021)

摘 要: 针对半干旱地区复杂的水分条件,从水循环整体的角度出发,通过水循环模拟与植物生长模拟,探索地 表植被与潜水的关系。以通辽市平原区的主要植被类型草地为研究对象,选取草地干物质产量作为反映草地植被 生长状况的指标,通过分析该指标对降水和地下水变化的响应,阐明地表生态系统对地下水的依赖性。结果表明, 枯水年草地生态系统稳定的适宜地下水埋深应在 2.0~2.2 m 之间;平水年草地干物质产量比枯水年增加 13.0%~ 47.8%,说明降水是影响半干旱地区生态系统稳定的重要因素;无潜水支持条件下,枯水年的草地干物质产量比多 年平均值减产 11.0%~14.7%,而平水年仅减产 3.8%~5.9%,可见降水的丰枯变化影响着草地的潜水依赖程度。 关键词: 生态,降水,水文,草地,潜水,干物质产量,半千旱地区

doi: 10.3969/j.issn.1002-6819.2013.22.014 中图分类号: P641 文献标志码: A 文章编号: 1002-6819(2013)-22-0118-10

孙青言,陆垂裕,栾清华,等.半干旱地区草地生态系统的潜水依赖性模拟[J].农业工程学报,2013,29(22):118-127.

Sun Qingyan, Lu Chuiyu, Luan Qinghua, et al. Simulation and analysis of grassland ecosystem dependence on phreatic water in semi-arid areas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(22): 118–127. (in Chinese with English abstract)

0 引 言

地下水作为影响干旱半干旱地区生态系统稳 定性的重要因素,在受到人类扰动后往往引起地表 植被的恶化^[1-3],因此,研究地表生态系统对地下水 变化的响应关系有其必要性。尤其在半干旱地区, 人类活动相对干旱地区频繁,地下水开采剧烈,而 降水又多于干旱地区,水分条件较为复杂,弄清地 表植被与地下水的关系,可为当地的生态环境保护 和地下水合理开发提供科学依据。

半干旱地区的降水和地下水是地表植被生长的两类主要水源,与此相关的地下水运动、植被蒸腾、潜水蒸发等环节,都是区域水循环的重要组成部分,可以说植被生长存在于水循环中^[4]。尽管很多类似研究都是采用观测试验的方法^[5-7],但是这些研究仅仅单独地针对植被-地下水关系进行研究^[8],很多其他影响因素均被忽略,如降水、温度、太阳

收稿日期: 2012-07-24 修订日期: 2013-10-28

辐射等都会影响植被生长,而且观测试验的精度对 结果影响很大,如地下水观测点分布稀疏,植被生 长测量代表性差等。从水循环整体的角度研究植被 -地下水的关系可以全面把握各项影响因素,而包括 植被生长模拟在内的水循环模拟则可以弥补观测 数据不足和代表性差的缺点,因此,水循环模拟与 植物生长模拟的结合为研究地表植被生态系统对 地下水的依赖性提供了一种新的途径。

本研究采用具有物理机制的分布式水文模型 MODCYCLE^[9-10],以典型的半干旱地区——通辽市 平原区为例,对水循环和植物生长进行模拟。由于 草地是通辽市平原区主要的植被类型,最能代表该 地区生态系统的主体,因此确定为研究对象。选取 草地干物质产量(地上部分)作为反映草地植被生 长状况的指标,通过分析该指标对降水和地下水变 化的响应,阐明地表生态系统对潜水的依赖性。

1 研究区域概况

通辽市位于中国内蒙古自治区东部、松辽平原 西端,所处经纬度范围 42°15′~45°41′N,119°15′~ 123°43′E,总面积 59 535 km²,其中,平原区面积 40 911 km²,占总面积的 69%。平原区地形趋势南北 高翘,中间低平,由西北向东南倾斜。该区域处于 半干旱气候区,1985-2007 系列年降水量在 225~ 499 mm 之间。通辽市年平均蒸发量在 1 800 mm 左

基金项目: 国家自然科学基金创新研究群体基金项目(50721006); 国 家 自 然 科 学 基 金 项 目 (50809076); 工 程 院 重 大 咨 询 项 目 (2012-ZD-13-6); 水利部公益性行业科研专项(201101021); 中国水 利水电科学研究院科研专项(ZJ1224); 河北省自然科学基金面上项目 (E2012402067); 国家自然科学基金面上项目(51279207)

作者简介: 孙青言 (1984-),男,山东临清人,博士生,主要从事水 循环模拟与调控及地下水、生态环境研究。北京 中国水利水电科学研 究院水资源所,10038。Email: sunqingyan123@163.com

右。通辽市及其平原区地理位置如图1所示。

根据遥感图像解译的土地利用信息图(2005 年),通辽市平原区主要的土地利用/覆被类型为不 同覆盖度的草地,占平原区面积的 41.2%,其次为 耕地,占平原区面积的 28.9%,林地及其他天然植 被面积较少。根据植被地表覆盖度,草地可分为高 覆盖度草地(植被覆盖度大于 50%)、中覆盖度草 地(植被覆盖度处于 20%~50%之间)和低覆盖度 草地(植被覆盖度处于 5%~20%之间),各占平原 区面积的 15.9%、19.7%和 5.6%。

根据通辽市水文局提供的 1985-2007 年各县 市地下水平均埋深加权平均,得出通辽市平原区地 下水埋深年际动态变化,地下水平均埋深由 1985 年末的 2.4 m 增大到 2007 年末的 4.0 m,平均下降 速度为 0.07 m/a。地下水的人为干扰对当地的生态 系统稳定产生了严重威胁。

2 模型与方法

2.1 模型简介

草地作为通辽市平原区主要的生态植被,在区 域水循环中扮演着重要角色,对半干旱地区的降水 产流、下渗、蒸腾发、地下水补给排泄等起着重要 的调节作用,反之,水循环中的各个环节也影响着 草地生态系统的稳定,因此,在区域水循环的整体 中研究草地植被生长对潜水的依赖性,比单独研究 草地-潜水关系考虑的因素更加全面,获得的结果也 更具合理性。

本研究采用的 MODCYCLE 模型已在一系列研 究中进行了成功运用,取得了良好的模拟效果^[10-13]。 为了改善地下水的模拟精度,模型耦合了地下水数 值仿真模型,形成具有强大地下水模拟功能的综合 性水文模型^[14],为本研究中的潜水埋深与蒸发动态 分析提供了坚实的基础。模型还具备较强的植物生 长过程模拟功能,在农作物产量的模拟中取得过良好的效果^[15],该功能所依据的植物生长理论是计算草地干物质产量的理论基础。

2.2 植物生长模拟

MODCYCLE 模型的植物生长模块可以计算植物每天的潜在生长量,即在水分、营养物质供应充足,气候适宜的理想条件下,植物干物质生物量、植物冠层高度、叶面积指数、根系等的增量。其中与草地干物质产量模拟直接相关的潜在植物干物质生物量计算基于 Monteith 提出的方法^[16]:

$$\Delta bio(t) = RUE \cdot H_{phosyn}(t) \tag{1}$$

式中, $\Delta bio(t)$ 为第 *t* 天能够增加的潜在干物质生物 量, kg/hm²; *RUE* 为 植 物 的 光 能 利 用 系 数 (kg/hm²·(MJ/m²)⁻¹),该参数与大气中 CO₂的浓度有 关,其计算可参考文献[17]; *H*_{phosyn}(*t*)为第 *t* 天植物叶 面拦截的有效光合作用辐射,MJ/m²,其计算公式为: $H_{phosyn}(t) = 0.5 \cdot H_d(t) \cdot \{1 - \exp[-k_l \cdot LAI(t) + 0.05]\}$

(2)

式中, $H_d(t)$ 为第 t 天到达地表的太阳辐射, MJ/m^2 ; k_l 为消光系数;LAI(t)为第 t 天植物的叶面积指数。

由于温度、水分、营养等限制性因素的影响, 植物有可能达不到潜在生长的程度,需要考虑环境 因素对植物生长的限制作用^[18]。目前模型主要考虑 温度和水分条件的影响。

在最优水分条件下水分胁迫为 0,在其他条件 下则可能达到 1。水分胁迫通过比较当天植物的实际蒸腾量和潜在蒸腾量计算:

$$wstrs = 1 - \frac{E_{t,act}}{E_t}$$
(3)

式中, wstrs 为当天的水分胁迫; E_t 为当天的潜在蒸腾量, mm; $E_{t,act}$ 为当天的实际蒸腾量, mm。

温度胁迫为当天平均气温和作物生长最优温 度的函数。气温接近作物生长最优温度时作物的温 度胁迫很小,在气温与最优温度差距较大时则会发 生温度胁迫。计算温度胁迫的公式为:

$$tstrs = 1, \qquad \overline{T}_{av} \leq T_{base}$$

$$tstrs = 1 - \exp\left[\frac{-0.1054 \cdot (T_{opt} - \overline{T}_{av})^{2}}{(\overline{T}_{av} - T_{base})^{2}}\right],$$

$$T_{base} < \overline{T}_{av} \leq T_{opt}$$

$$tstrs = 1 - \exp\left[\frac{-0.1054 \cdot (T_{opt} - \overline{T}_{av})^{2}}{(2 \cdot T_{opt} - \overline{T}_{av} - T_{base})^{2}}\right],$$

$$T_{opt} < \overline{T}_{av} \leq 2 \cdot T_{opt} - T_{base}$$

$$tstrs = 1, \qquad \overline{T}_{av} > 2 \cdot T_{opt} - T_{base}$$

式中, tstrs 为当天的温度胁迫; Tav 为当天的日平	$\Delta bio_{act}(t) = \Delta bio(t) \cdot \gamma_{reg}$
均气温,℃;T _{base} 为植物的生长基温,℃;T _{opt} 为	式中, $\Delta bio_{act}(t)$ 为当天的实际生物量产
植物的最优生长温度,℃。	3 模型构建
考虑温度和水分条件后,植物干物质产量将被 修正,具体将通过比例系数法线性修正。植物当天 实际生长占潜在生长的比例通过下式计算:	3.1 数据与参数 模型所需数据十分庞杂,包括众多)

(5) $\gamma_{reg} = 1 - \max(wstrs, tstrs)$ 式中, yreg 为作物生长因子(0.0~1.0)。作物当天的 实际生长为:

(6) ⁻量,kg/hm²。

的水循环驱动 数据和各种空间数据。数据的收集和处理在模型的构 建中占据基础性的重要位置,在模型的率定与验证中 起着关键作用。模型所需主要输入数据如表1所示。

Table 1 Main input data for MODCYCLE model									
数据类型 Data type	数据内容 Data content	说明 Data description and source							
	数字高程图 (DEM)	90m×90m 分辨率							
基础地理信息	土地利用/覆被类型分布图	1:10万(2005年)							
Basic geographic information	土壤类型分布图	1:100 万							
	数字河网	1:25 万							
土壤数据库 Soil database	孔隙度、密度、水力传导度、田间持水率、凋萎 含水率等	摘自《内蒙古土种志》							
气象信息 Weather information	降水量、气温、风速、太阳辐射、相对湿度,位 置分布	通辽市水文局、通辽市气象局、国家 气象部门							
农作物管理信息 Crop management information	灌溉制度、灌溉定额等	通辽市水文局提供							
农作物种植信息 Crops information	分区农作物种植种类、面积等	摘自《通辽统计年鉴》							
水利工程信息 Water engineering information	水利工程参数	通辽市水文局提供							
出入境水量信息 Entry and exit of water information	系列年出入境水量	各年《通辽市水资源公报》							
地下水信息 Groundwater information	地下水观测井位置及地下水埋深数据	通辽市水文局提供							
供、用水信息 Water supply and use information	农业灌溉用水、工业用水、城市和农村生活用水 数据等	摘自《通辽市水资源公报》							

表 1 MODCYCLE 模型主要输入数据

气象条件是自然水循环的主动力之一,用来计 算降雨产流和潜在蒸发等, 也是作物生长所必需的 驱动因子。模型中用到的气象数据包括日降水量、 日最高气温、日最低气温、日太阳辐射量(日照时 数)、日风速、日相对湿度等,数据包括来自国家 和地方气象部门的 1985-2007 年的实测记录及其 位置信息。

收集了 72 个通辽市 1981-2008 年的浅层地下 水埋深观测点数据,主要分布在平原区,用于模型 的校正和验证。通过分析和插值观测点数据,并结 合地表高程数据,确定模型运行的初始地下水位。 通辽市平原区含水层为一个碗型的含水层盆地,山 前倾斜平原处含水层厚度较薄,约10~40m,平原 中部地区含水层厚度较大,大部分地区可达 100~ 200 m,具有良好的地下水储水条件。通辽市平原 区给水度的分布规律为山前倾斜平原粗砂地带给 水度较大,一般约 0.12~0.14, 平原中部地区随着 岩层透水性的减弱给水度逐渐变小,分布值约 $0.06 \sim 0.1$ °

植物生长模拟涉及的参数,如叶面积指数,为 植株生长高度的函数,通过建立参考植物的叶面积 指数与植株高度之间的方程计算;植株当天的潜在 蒸腾量利用 Penman-Monteith 公式计算; 植株当天 的实际蒸腾量与土壤的实际含水率有关,通过建立 两者的关系式计算;不同植物的生长基温和最优生 长温度有所差异,一般通过观测试验获得,模型中 参数的取值参考了 SWAT 数据库中相关植物的生 长基温和最优生长温度。

3.2 模型校验

3.2.1 地下水校验

模型校验是模型构建的必要步骤,用以校正模 型并检验模型在研究区域水循环模拟中的合理性 和可靠性。模型从出境水量、地下水位和农业地下 水开采3个方面进行了校验,通过模拟结果与实测 统计数据的对比分析,发现两者均拟合良好,取得 了不错的模拟效果。其中的地下水位校验关系到模 型对地下水的模拟精度,从而影响草地生态系统对 于地下水埋深变化可能的响应关系的分析,故本研 究对此重点关注。

图 2 为模型模拟到 2007 年年末时的地下水位 与实测地下水位的对比情况。从模拟结果来看,除 了人类开采剧烈的东北部地区存在部分偏差外,模 拟等值线与实测等值线形态基本一致,可以说取得 了较好的模拟效果。同一基准的地表高程与地下水 位的差值即地下水埋深,精确的地下水埋深分布有 助于精确的潜水蒸发模拟,这在地表生态植被的潜 水依赖性分析中至关重要。

3.2.2 植物生长模拟检验

检验模型对草地生长模拟的优劣需要对实测 数据与模拟结果进行对比。然而,该研究没有收集 到研究区域草地干物质产量的实测数据,但是为了 验证模拟结果的合理性,笔者从大量相关文献中搜 集了部分实测数据,整理后并与模拟结果加以比 较,如表2所示。

模型模拟的草地干物质产量是每片草地基础 模拟单元上的平均单位面积干草质量,而实地观测 值往往是某一观测点的草地单产,这样得出的观测 值随观测点位置的选取可能发生较大变化,与模型 输出的面平均值进行比较,产生理想的拟合效果的 可能性不大,因此,本研究仅对模拟值和实测值的 最小值、最大值和平均值进行了比较,以检验模拟 值的波动范围(最小值、最大值的分布和比值)和 波动轴心(平均值)是否处于合理的区间。

	Table 2	Comparisons between measured values and simulated values for grass dry matter yields (DMYs)									
数据来源 Data source		干物质产量 Dry matter yield/(kg·hm ⁻²)			最大值/最小值 的比值	观测日期	监测地区/监测站				
		最小值 Minimum	最大值 Maximum	大值 平均值 Ratio of .imum Mean maximum:minimum		Observation date	Monitoring regions/ stations				
	文献[19]	450.0	3 000.0	-	6.7	多年	通辽市				
	文献[20]	450.0	3 000.0	-	6.7	2012年8月	通辽市平原区(8月份植被指数图目测)				
实测值 Measured	文献[21]	550.3	3 558.8	1 744.1	6.5	2008年8月	内蒙古 12 个盟市				
	文献[22]	-	-	2 414.5		2009 年 8 月	锡林郭勒盟西乌珠穆沁旗哈日根台苏木监测站 (典型草原)				
		-	-	3 651.9			物林郭朝盟四马珠穆沁旗金河办木监测站 (草甸草原)				
value	文献[23]	207.2	3 339.0	1 155.1	16.1	2004-2011年7月	内蒙古 43 个草原监测站				
	文献[24]	1 285.5	7 446.7	2 559.9	5.8	2006-2007年8月	内蒙古中部 14 个旗县				
	· 古· 赤於[26]	1 171.8	2 910.0	1 868.5	2.5	2004 年	呼伦贝尔市鄂温克族自治旗 25 个样地				
	又瞅[25]	1 033.3	3 920.0	1 878.8	3.8	2009年	呼伦贝尔市鄂温克族自治旗48个刈割草地样地				
	文献[26]	1 223.0	2 500.0	1 843.8	2.0	1989-2005 年	呼伦贝尔市海拉尔草甸草原				
模拟值Sim	ulated value	660.0	3 364.5	1 607.9	5.1	1988-2007年	通辽市平原区				

表 2 草地干物质产量实测值与模拟值的对比

草地干物质产量的观测受众多因素的影响,存 在很大的不确定性,观测结果变化幅度剧烈。表 2 的文献[23]提供的实测值观测空间范围大(内蒙古 全区),观测时间长(8a),造成观测值分布范围 广,其最大值/最小值的比值高达16.1,而文献[26] 的这一比值只有 2.0,所有文献实测最大值/最小值 的比值的平均值为 6.3,比模拟值 5.1 的最大值/最 小值比值高了 23.5%,但是考虑到观测值本身的不 确定性,这一差异处于可接受的范围内。

文献提供的实测最小值从 207.2~1 285.5 kg/hm² 不等,模拟最小值 660.0 kg/hm²处于这一范围内; 最大值从 2 500.0~7 446.7 kg/hm²之间变化,模拟 最大值 3 364.5 kg/hm²也处于这一范围。另外,模 拟值 660.0~3 364.5 kg/hm²的波动区间也包含或被 包含在部分文献提供的实测值波动区间中,这都说 明了模拟值的合理性。 最后,模拟值的平均值为1607.9 kg/hm²,在实 测值的平均值中处于较低水平,这与观测点的位置 有关。大部分的文献所选取的观测点处于水草较为 茂盛的地区或者刈割草地区,往往轻视低覆盖度草 地的观测,使得观测值普遍偏大,这也从侧面印证 了前面提到的"植物生长测量代表性差"的观点。 如文献[22]的实测数据来自西乌珠穆沁旗的2个草 原监测站,文献[24]的实测数据采自内蒙古中部的 旗县,这些地区的草原是内蒙古的高产区,而通辽 平原区产草量处于一般水平,这就解释了模拟平均 值低于文献实测平均值的原因。

综上分析,模型对草地生长的模拟值是合理 的,进而验证了植物生长模型的可靠性,可以用于 通辽平原区的草地生长模拟分析与研究。

4 结果与分析

4.1 枯水年系列降水-草地干物质产量关系

1999-2007 年是平原区降水长系列的连续枯水年(P=75%),年均降水量仅为284 mm,明显低于多年平均值368 mm(数值来自《通辽市水资源公报》)。图3展示了1998-2007年不同覆盖度草地单位面积干物质产量与降水的相互关系。 1998年降水偏丰,对1999年的草地生长可能产生影响,故结果分析时也考虑在内,用以说明1999年枯水年草地干物质高产的原因。

各覆盖度草地干物质产量与降水量的线性相 关性很差,相关系数最高的为高覆盖度草地,也只 有 0.24,尽管如此,干物质产量仍和降水量的升降 趋势大致相符,可见枯水年降水量对草地的生长有 一定作用,但不是全部影响因素。

不同覆盖度草地对降水量的敏感性有所差异。 3 种覆盖度草地对降水量的变化趋势基本一致,但 是 10 a 中年干物质产量的标准差与年降水量的标 准差的比值各不相同,高、中和低覆盖度草地的这 一比值分别为 7.2、5.3 和 0.9 kg/(hm²·mm),可见, 在年降水量标准差相同的情况下,各年草地干物质 产量相对于均值的离散程度(标准差),高覆盖度 草地最大,中覆盖度草地次之,低覆盖度草地最小。 上述分析说明高覆盖度草地对降水量最为敏感,图 3 也表达了这一点,当降水量出现高值时,干物质 产量将会迅速增长,2005 年降水 357 mm 时最高可 达2 670 kg/hm²; 当降水较少时,干物质产量又会 迅速下降,如 2000-2002 年降水仅 229~258 mm, 干物质产量低至 945~1 380 kg/hm²。与之相比,中 覆盖度草地对降水的敏感性有所降低,低覆盖度草 地则对降水量变化更不敏感,干物质产量在模拟期 内比较稳定。

值得注意的是 1999 年降水量也很低, 仅 249~264 mm, 但高、中、低 3 种不同覆盖度草地的产量 却普遍偏高,这应该得益于 1998 年少见丰水年抬 升了平原区整体的地下水位,同时较多的水分蓄积 到土壤深层, 使得 1999 年初良好的土壤水分和潜 水埋深条件为草地生长提供了保障,这也从一个侧 面说明了地下水对草地生长起到一定作用。

4.2 枯水年系列潜水埋深-草地生态稳定性分析

通过上述分析,枯水年降水量对草地生长具有 一定作用,但是两者相关性较差,说明还有其他影 响草地生长的因素。半干旱地区能为地表植被提供 水分的除了降水还有地下水,因此,本节继续探索 潜水埋深对草地生态稳定性的影响。

通过降水与干物质产量关系分析,低覆盖度草 地干物质产量相对比较稳定,高、中覆盖度草地对 水分条件比较敏感,以下分析主要针对高、中覆盖 度草地进行。先从不同潜水蒸发量下高、中覆盖度 草地干物质产量的规律着手,找出不同潜水蒸发量 与草地植被干物质产量的关系,再根据潜水蒸发公 式确定保障高、中覆盖度草地稳定产出的潜水埋深。

由于草地植被干物质产量与年降水总量、降水 年内分布、潜水蒸发、气象要素、土壤剖面墒情分 布变化等多种因素有关,植被干物质产量大小具有 一定的随机性,为独立找出干物质产量与潜水蒸发 量之间的关系,需要进行数据统计分析。模型的空 间输入数据处理中将研究区域细分为大量的基础 模拟单元,其中的草地单元均有相应的平均草地干 物质产量和平均潜水蒸发量,将所有草地单元的平 均潜水蒸发量每隔 20 mm 一个区间进行划分,对各 区间内所有草地单元对应的平均干物质产量进行 算术平均,统计出各区间内高、中覆盖度草地的干 物质产量的平均值,绘制潜水蒸发-草地植被干物质 产量关系曲线,如图 4 所示。

从统计结果看,潜水蒸发对高、中覆盖度草地 的干物质产量具有较为显著的影响。随着潜水蒸发 量的增加,高、中覆盖度草地的干物质产量也逐渐 增大。但潜水蒸发量增加到一定幅度时,草地的干 物质产量均趋于稳定,潜水蒸发继续增加对干物质 产量影响不大。大致而言,高覆盖度草地在潜水蒸 发量位于 80~100 mm 区间及以上时,平均干物质 产量约为 2615 kg/hm²,中覆盖度草地在潜水蒸发 位于 60~80 mm 区间及以上时,平均干物质产量约 为 2029 kg/hm²。

潜水蒸发随埋深加大呈非线性衰减规律,根据 MODCYCLE 模型采用的潜水蒸发公式(阿维里扬 诺夫经验公式):

$$E_g = K \cdot E_0 \left(1 - \frac{d}{D_{\text{max}}} \right)^p \tag{7}$$

式中, E_g 为潜水蒸发强度,mm;K为潜水蒸发系数; E_0 为土壤的潜在蒸发量,mm; D_{max} 为潜水蒸发的极限埋深,m;d为潜水埋深,m;p为潜水蒸发指数。

白显金等^[27]曾对通辽河西区潜水蒸发的极限 埋深进行过分析。经过统计,平均潜水蒸发的极限 埋深在 2.95 m 左右。根据模型参数率定结果,潜水 蒸发系数 K 取 1.0,潜水蒸发指数 p 取 2.4,1998-2007 年期间平均潜在蒸发量 E₀为 1 543 mm。根据 以上参数值和潜水蒸发公式可绘制潜水蒸发-埋深 关系曲线,见图 5。

按照高覆盖度草地保持 2 615 kg/hm² 的稳定产 量,根据上述统计结果,潜水蒸发在 80~100 mm 区间比较合适,此时对应的潜水埋深约 2.0~2.1 m; 对于中覆盖度草地,若保持 2 029 kg/hm² 的稳定产 量,潜水蒸发在 60~80 mm 区间比较合适,此时对 应的潜水埋深约 2.1~2.2 m。埋深过浅会造成地下 水不必要的浪费,甚至产生土壤盐渍化;埋深过深则 会影响草地生态的稳定性。当潜水埋深低于 3 m 左右 时,潜水蒸发几乎为 0,此时高、中覆盖度草地的干 物质产量分别比多年平均值减少了 11.0%、14.7%。

上述统计分析针对的是高、中覆盖度草地,潜 水埋深在 2.0~2.2 m 范围内可以保持稳定产出,对 于水分条件不敏感的低覆盖度草地,该埋深范围完 全可以保证其稳定的干物质产量。如果潜水埋深超 出这一范围,即使低覆盖度草地仍然保持稳定,但 是已经影响占平原区草地总面积 86.4%的高、中覆 盖度草地的稳定生长,此时再探索低覆盖度草地生 长的适宜地下水埋深范围意义不大,因此,本研究 未加考虑。

需要注意的是,以上结论是在枯水年系列气象 条件下统计得出,因此潜水埋深控制指标仅针对该 枯水段的研究。

4.3 平水年系列草地植被干物质产量分析

平原区 1988-1997 年 10 a 平均降水量为 372 mm,与 368 mm 的多年平均值较为接近,故作 为情景分析的平水年系列。该情景下平原区高、中、 低覆盖度草地的干物质产量分别为2505、2145、 915 kg/hm²,与枯水年相比,均有一定幅度的增加。 平水年与枯水年降水量及草地干物质产量比较如 表3所示。

表 3	平水年与枯水年降水量及草地干物质产量比较	
	I man initations and smars DMWs in descenses and in a second single similarity	

Table 3 Comparisons of annual precipitations and grass DMYs in dry years and in normal precipitation years										
草地类型 Grassland type	声地类型高覆盖度草地ssland typeHigh coverage grassland			Mediu	中覆盖度草地 um coverage gr	l assland	低覆盖度草地 Low coverage grassland			
时段 Period	枯水年 Dry years	平水年 Normal years	增幅 Increase/%	枯水年 Dry years	平水年 Normal years	增幅 Increase/%	枯水年 Dry years	平水年 Normal years	增幅 Increase/%	
降水量 Precipitation/mm	308.0	362.0	17.5	312.0	375.0	20.2	316.0	364.0	15.2	
干物质产量 Dry matter yield/(kg·hm ⁻²)	1 695.0	2 505.0	47.8	1 560.0	2 145.0	37.5	810.0	915.0	13.0	

表 3 中统计结果表明,在降水偏丰时,由于草 地植被对降水的利用量增加,降水对生态系统的支 持有所提高。此时,草地对潜水蒸发的依赖性会发 生怎样的变化,或者说地下水埋深控制对草地植被 干物质产量的作用是否会减弱。为此,模拟情景维 持平水年的各项模拟条件不变,仅将全平原区地下 水埋深控制在 10 m 以下,分析草地干物质产量在 无潜水供给水分的情况下发生的变化。 为了相互区别,平水年不对地下水埋深进行控制的情景简称为正常埋深情景,地下水埋深控制在 10 m 以下的情景简称为大埋深情景。将正常埋深情 景与大埋深情景下的干物质产量进行对比,如表 4 所示。高、中、低覆盖度草地平均减产率分别为 5.9%、3.8%、0.7%,可见,当平原区处于平水年时, 潜水对草地植被的支撑作用是比较小的,即使完全 依赖降水草地植被的生长也不会受到太大影响。

表 4 正常埋深和大埋深情景下草地植被干物质对比 Table 4 Comparisons of grass DMYs in phreatic water scenarios of normal depth and large depth

		, ,		<u> </u>						ē			
草地类型 Grassland type		地下水埋深情景	年份 Year									平均	
		Groundwater depth scene	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	Average
高覆盖度草地 High coverage grassland 干物质产量 Dry matter yield/(kg·hm ⁻²) 低覆盖度草地 Low coverage grassland	高覆盖度首地	正常埋深 Normal depth	1 431.0	2 629.5	2 469.0	3 364.5	3 241.5	2 266.5	2 610.0	2 974.5	2 545.5	1 539.0	2 506.5
	High coverage	大埋深 Large depth	1 339.5	2 551.5	2 413.5	3 334.5	3 124.5	2 044.5	2 436.0	2 694.0	2 248.5	1 408.5	2 359.5
	grassland	减产率 Yield cut rate/%	6.4	3.0	2.2	0.9	3.6	9.8	6.7	9.4	11.7	8.5	5.9
	中覆盖度草地 Medium coverage grassland	正常埋深 Normal depth	1 249.5	2 331.0	2 161.5	2 520.0	2 569.5	2 176.5	2 101.5	2 460.0	2 335.5	1 615.5	2 151.0
		大埋深 Large depth	1 153.5	2 290.5	2 134.5	2 511.0	2 554.5	2 055.0	2 005.5	2 379.0	2 175.0	1 434.0	2 070.0
		减产率 Yield cut rate/%	7.7	1.7	1.2	0.4	0.6	5.6	4.6	3.3	6.9	11.2	3.8
	低覆盖度草地 Low coverage grassland	正常埋深 Normal depth	720.0	1 020.0	904.5	979.5	996.0	915.0	879.0	940.5	951.0	853.5	915.0
		大埋深 Large depth	675.0	1 015.5	904.5	979.5	996.0	913.5	876.0	939.0	945.0	838.5	909.0
		减产率 Yield cut rate /%	6.3	0.4	0	0	0	0.2	0.3	0.2	0.6	1.8	0.7

5 结 论

半干旱地区的降水和地下水都对地表植被的 生长起着重要作用。本研究以草地干物质产量作为 衡量草地生态系统状况的指标,在水循环的整体中 模拟植物生长过程,探索通辽市平原区地表植被对 潜水的依赖性。通过结果分析得出如下结论:

 1)枯水年系列草地干物质产量与降水的升降 趋势大致相符,但是两者的线性相关性较差,说明 降水对草地的生长有一定作用,但不是全部影响因 素。另外,不同覆盖度草地对水分的敏感性不同, 覆盖度越大的草地对水分供给变化的反应越明显;

2)对枯水年系列潜水蒸发与草地干物质产出的关系进行了统计分析,发现潜水蒸发对高、中覆

盖度草地的干物质产量具有较为显著的影响。随着 潜水蒸发量的增加草地干物质产量逐渐增大,但当 潜水蒸发量增加到一定程度时,草地干物质产量趋 于稳定,潜水蒸发继续增加对干物质产量影响不 大。根据潜水蒸发-埋深关系曲线确定高、中覆盖度 草地的适宜潜水埋深范围分别为 2.0~2.1、2.1~ 2.2 m。当潜水埋深低于 3 m 左右时,地表植被失去 潜水支持,此时高、中覆盖度草地的干物质产量分 别比多年平均值减产 11.0%、14.7%;

3)平水年系列草地干物质产量比枯水年系列 产量有所增加。潜水正常埋深情景下(不对地下水 埋深进行控制),高、中、低覆盖度草地干物质产 量分别比枯水年系列产量增加 47.8%、37.5%、 13.0%,说明降水偏丰时降水对生态系统的支持有

所提高;

4) 在平水年系列潜水大埋深情景下(模拟地下水埋深控制在 10 m 以下),潜水对地表植被生长无支持,此时,高、中、低覆盖度草地平均减产分别为 5.9%、3.8%、0.7%,低于枯水年无潜水支持时草地的减产率,说明平水年潜水对草地植被的支撑作用是比较小的,即使完全依赖降水草地植被的生长也不会受到太大影响。

[参考文献]

[1] 范锡朋.西北内陆平原水资源开发引起的区域水文效
 应及其对环境的影响[J].地理学报,1991,46(4):415
 -426.

Fan Xipeng. On the regional hydrologic effect caused by the development of water resources and its influence on ecological-environment in inland arid area[J]. Acta Geographica Sinica, 1991, 46(4): 415-426. (in Chinese with English abstract)

[2] 王根绪,程国栋,徐中民.中国西北干旱区水资源利 用及其生态环境问题[J].自然资源学报,1999,14(2): 109-116.

Wang Genxu, Cheng Guodong, Xu Zhongmin. The utilization of water resource and its influence on eco-environment in the northwest arid area of China[J]. Journal of Natural Resources, 1999, 14(2): 109-116. (in Chinese with English abstract)

- [3] Esteller M V, Diaz-Delgado C. Environmental effects of aquifer overexploitation: a case study in the Highlands of Mexico[J]. Environmental Management, 2002, 29(2): 266 -278.
- [4] 张济世. 物理水文学——水循环物理过程[M]. 郑州: 黄河水利出版社, 2007: 259-419.
- [5] 陈亚宁,李卫红,徐海量,等. 塔里木河下游地下水 位对植被的影响[J]. 地理学报,2003,58(4):542-549. Chen Yaning, Li Weihong, Xu Hailiang, et al. The influence of groundwater on vegetation in the lower reaches of Tarim River, China[J]. Acta Geographica Sinica, 2003, 58(4): 542-549. (in Chinese with English abstract)
- [6] Michael T M, Randell J L, David I S. Evapotranspiration rate measurements of vegetation typical of ground-water discharge areas in the basin and range carbonate-rock aquifer system, white pine county, nevada, and adjacent areas in nevada and utah, september 2005–August 2006[R]. U.S. Geological Survey, 2007.
- [7] Paço T A, David T S, Henriques M O, et al. Evapotranspiration from a Mediterranean evergreen oak savannah: The role of trees and pasture[J]. Journal of Hydrology, 2009, 369(1/2): 98-106.

- [8] 张二勇,陶正平,王晓勇,等.基于植被结构分析法的生态植被与地下水关系研究-以鄂尔多斯盆地内蒙古能源基地为例[J].中国地质,2012,39(3):811-817. Zhang Eryong, Tao Zhengping, Wang Xiaoyong, et al. A study of vegetation response to groundwater on regional scale in northern Ordos Basin based on structure chart method[J]. Geology in China, 2012, 39(3): 811-817. (in Chinese with English abstract)
- [9] 陆垂裕,秦大庸,张俊娥,等.面向对象模块化的分布式水文模型 MODCYCLE I:模型原理与开发篇[J].水利学报,2012,43(10):1135-1145.
 Lu Chuiyu, Qin Dayong, Zhang Jun'e, et al. MODCYCLE-an object oriented modularized hydrological model (I): theory and development[J]. Journal of Hydraulic Engineering, 2012,43(10):1135-1145. (in Chinese with English abstract)
- [10] 张俊娥,陆垂裕,秦大庸,等.面向对象模块化的分 布式水文模型 MODCYCLE II:模型应用篇[J].水利 学报,2012,43(11):1287-1295.
 Zhang Jun'e, Lu Chuiyu, Qin Dayong, et al. MODCYCLE-An object oriented modularized hydrological model (II): application[J]. Journal of Hydraulic Engineering, 2012, 43(11):1287-1295. (in Chinese with English abstract)
- [11] 张俊娥,陆垂裕,秦大庸,等.基于 MODCYCLE 分 布式水文模型的区域产流规律[J].农业工程学报, 2011, 27(4): 65-71.
 Zhang Jun'e, Lu Chuiyu, Qin Dayong, et al. Regional runoff study based on MODCYCLE distributed hydrology model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(4): 65-71. (in Chinese with English abstract)
- [12] 王润冬,陆垂裕,孙文怀,等.基于 MODCYCLE 模型的农田降水入渗补给研究[J].人民黄河,2011, 33(4):51-53.
- [13] 张俊娥,陆垂裕,秦大庸,等. 基于分布式水文模型 的区域"四水"转化[J]. 水科学进展, 2011, 22(5): 595-604.
 Zhang Jun'e, Lu Chuiyu, Qin Dayong, et al. Regional "four-water" transformation based on distributed hydrological model[J]. Advances in Water Science, 2011, 22(5): 595-604. (in Chinese with English abstract)
- [14] 陆垂裕,秦大庸,王浩.一种基于水循环的地下水数 值 仿 真 方 法 [P]. 中 国 专 利: 2011 10437875.4.
 2011-12-23.
- [15] 张俊娥. 强人类活动地区"四水"转化定量研究——以天津市为例[D]. 北京:中国水利水电科学研究院,2011:107-108.
 Zhang Jun'e. Quantitative Study of "Four Water" Transformation on a Region With Strong Human

Activities: in Tianjin as a case[D]. Beijing: China Institute of Water Resources & Hydropower Research, 2011: 107–108. (in Chinese with English abstract)

- [16] Monteith J L. Climate and the efficiency of crop production in Britain [J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1977, 281(980): 277-294.
- [17] Stockle C O, Williams J R, Rosenberg N J, et al. A method for estimating the direct and climatic effects of rising atmospheric carbon dioxide on growth and yield of crops: Part I—Modification of the EPIC model for climate change analysis[J]. Agricultural Systems, 1992, 38(3): 225-238.
- [18] Neitsch S L, Arnold J G, Kiniry J R, 等. SWAT 2009 理 论基础[M]. 龙爱华, 邹松兵, 徐宝荣, 等译. 郑州: 黄河水利出版社, 2012: 201-206.
- [19] 通辽市人民政府. 通政办关于印发通辽市草原生态保护补助奖励机制实施方案的通知[EB/OL].
 http://bgt.tongliao.gov.cn/nzcms_show_news.asp?id=5069, 2011-11-8.
- [20] 内蒙古自治区政府. 2012 年内蒙古自治区草原监测报告 [EB/OL]. http://www.nmg.gov.cn/main/nmg/zfxxgk/tjgb/2013-02-26/2_246964/default.shtml, 2013-2-26.
- [21] 梁燕,魏玉荣,刘爱军. 基于 MODIS-NDVI 的草地遥 感在内蒙古天然草原植被状况中的应用[J]. 内蒙古草 业,2009,21(3): 40-44.
- [22] 李云鹏,格根图,娜日苏,等. MERSI 资料在内蒙古 草原牧草产量估测中的应用研究[J]. 干旱区资源与环 境,2012,26(9):154-159.
 Li Yunpeng, Ge Gentu, Na Risu, et al. The applied

research on estimating the yield of forage in Inner Mongolia grasslands using MERSI Data[J]. Journal of Arid Land Resources and Environment, 2012, 26(9): 154 -159. (in Chinese with English abstract)

- [23] 李兴华,陈素华.内蒙古草地干旱损失评估方法研究
 [J]. 草业科学, 2012, 29(7): 1033-1038.
 Li Xinghua, Chen Suhua. Assessment method of grassland loss from drought damage in Inner Mongolia
 [J]. Pratacultural Science, 2012, 29(7): 1033-1038. (in Chinese with English abstract)
- [24] 高浩,潘学标,符瑜. 气候变化对内蒙古中部草原气候生产潜力的影响[J]. 中国农业气象,2009,30(3):277-282.

Gao Hao, Pan Xuebiao, Fu Yu. Influence of climate change on potential climate productivity in grassland of central inner mongolia[J]. Chinese Journal of Agrometeorology, 2009, 30(3): 277–282. (in Chinese with English abstract)

[25] 刘及东. 基于气候产草量模型与遥感产草量模型的草 地退化研究[D]. 呼和浩特:内蒙古农业大学,2010: 41-45.

Liu Jidong. Study of Rangeland Degeneration Base on Climate Herbage Yield Model and Remote Sensing Herbage Yield Model[D]. Hohhot: Inner Mongolia Agricultural University, 2010: 41-45. (in Chinese with English abstract)

[26] 马瑞芳.内蒙古草原区近 50 年气候变化及其对草地
 生产力的影响[D].北京:中国农业科学院,2007:30
 -31.

Ma Ruifang. Climate Change during the Past 50 Years and Its Impact on the Production Ability in Inner Mongolia Grassland[D]. Beijing: Chinese Academy of Agricultural Sciences, 2007: 30-31. (in Chinese with English abstract)

[27] 白显金,刘延玺,吴文. 通辽河西潜水 μ 和 Δ₀的分析
 [J]. 内蒙古水利, 1994(3): 39-42.

Simulation and analysis of grassland ecosystem dependence on phreatic water in semi-arid areas

Sun Qingyan¹, Lu Chuiyu¹, Luan Qinghua^{1,2}, Li Hui¹, Wang Lin¹

 State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China;
 School of Water Conservancy and Electric Power, Hebei University of Engineering, Handan 056021, China)

Abstract: In semi-arid areas, human activity is more frequent than in arid areas, which makes groundwater exploitation more severe, while there is more precipitation relative to dry areas, which increases the complexity of the moisture conditions. For the complex water conditions in the semi-arid regions, the relationship between vegetation and phreatic water was explored by water cycle simulation and plant growth simulation from the perspective of the whole water cycle. The grassland, the main land use/cover types in Tongliao plain areas, and

the grass dry matter yield (DMY), an indicator reflecting grassland vegetation growth situation, were selected for this study.

Grassland plays an important role in the water cycle and regulates runoff, infiltration, evapotranspiration, groundwater recharge and discharge and so on in this region. In this paper, the water cycle is simulated by the MODCYCLE model, which is a distributed hydrological model with physical mechanism. The model also contains plant growth module, and couples with groundwater numerical simulation model, which makes the model become a set of powerful integrated hydrological model. Calibration and validation of the model were conducted in terms of groundwater and grass DMY. Simulated values and measured values of the groundwater level were compared in the end of simulation period by the way of groundwater contour map, and found both good fit. The analog values of grass DMYs were compared with the measured values from several literatures, and were proved that the results are reasonable.

By analyzing the response of the DMY per unit area to the changes of precipitation and groundwater, the dependence of surface ecosystems on the groundwater was understood. Firstly, the response relationship between the analog values of the grass DMYs and the precipitation is analyzed and it is not a linear relationship. However, the grass DMYs are roughly in line with the movement trends of the precipitation. Precipitation is a factor affecting the growth of grass in dry years, but not all factors. Secondly, based on the statistical analysis of the grass DMYs at different intervals of phreatic water evaporation volume, relation curve between evaporation and grassland vegetation dry matter yield is established. As the evaporation increases, the DMYs of the high and medium coverage grasslands also increase. However, when the amount of evaporation increases to a certain extent, the grass DMYs are stabilized. The results show that the range of 2.0-2.2 m is the suitable groundwater depth for the stability of grassland ecosystems in dry years. Thirdly, the grass DMYs in normal precipitation years were also simulated for comparison with those in dry years. The results of statistical analysis show that the grass DMYs in normal precipitation years increase by 13.0%-47.8% to those in dry years, which explains that precipitation is an important factor affecting the stability of ecosystems in semi-arid areas. Finally, no support from phreatic water, the grass DMYs cut 11.0%-14.7% of the average for 10 years in dry years, and cut 3.8%-5.9% of the average for 10 years in normal precipitation years, showing that changes in precipitation affect the dependence on groundwater for grassland.

Key words: ecology, rain, hydrology, grassland, phreatic water, dry matter yield, semi-arid regions

(责任编辑:曾勰婷)