高级检索+

基于无人机RGB影像的马铃薯植株钾含量估算

Estimation of Potassium Content of Potato Plants Based on UAV RGB Images

  • 摘要: 马铃薯植株钾含量(Plant potassium content, PKC)是监测马铃薯营养状况的重要指标,快速准确地获取马铃薯植株钾含量对田间施肥和生产管理具有指导意义。基于无人机遥感平台搭载RGB传感器分别获取马铃薯块茎形成期、块茎增长期和淀粉积累期的RGB影像,并实测马铃薯植株钾含量。首先利用各个生育期的RGB影像提取每个小区冠层平均光谱和纹理特征。然后分别基于冠层光谱和纹理特征构建植被指数和纹理指数(NDTI、RTI和DTI),并与实测PKC进行相关性分析。最后利用多元线性回归(Multiple linear regression, MLR)、偏最小二乘(Partial least squares regression, PLSR)和人工神经网络(Artificial neural networks, ANN)构建马铃薯PKC估算模型。结果表明:各生育期NDTI、RTI和DTI与马铃薯PKC相关性均高于单一纹理特征,植被指数结合纹理指数均能提高模型的可靠性和稳定性,MLR和PLSR构建的估算模型精度均优于ANN。本研究可为马铃薯PKC监测提供科学参考。

     

    Abstract: Plant potassium content(PKC) of potato plants is an important indicator for monitoring potato nutrition status. Obtaining PKC quickly and accurately has guiding significance for field fertilization and production management. RGB images of potato plants during the tuber formation period, tuber growth period, and starch accumulation period were obtained by using an unmanned aerial vehicle(UAV) remote sensing platform equipped with an RGB sensor, and PKC was measured. Firstly, the average spectral and texture features of each plot were extracted from the RGB images of each growth period. Then vegetation indices and texture indices(NDTI, RTI, and DTI) were constructed based on the spectral and texture features of the canopy, and their correlations with the measured PKC were analyzed. Finally, multiple linear regression(MLR), partial least squares regression(PLSR), and artificial neural networks(ANN) were used to construct models for estimating potato PKC. The results showed that the correlations between NDTI, RTI, DTI and PKC were higher than those of single texture features during each growth period. Combining vegetation and texture indices can improve the reliability and stability of the model. MLR and PLSR models were superior to ANN. The research result can provide scientific references for monitoring PKC in potato plants.

     

/

返回文章
返回