高级检索+

冬小麦冠层温度对大气温度的时滞效应与影响因素研究

张智韬, 张秋雨, 杨宁, 罗林育, 黄嘉亮, 姚一飞

张智韬, 张秋雨, 杨宁, 罗林育, 黄嘉亮, 姚一飞. 冬小麦冠层温度对大气温度的时滞效应与影响因素研究[J]. 农业机械学报, 2023, 54(11): 359-368.
引用本文: 张智韬, 张秋雨, 杨宁, 罗林育, 黄嘉亮, 姚一飞. 冬小麦冠层温度对大气温度的时滞效应与影响因素研究[J]. 农业机械学报, 2023, 54(11): 359-368.
ZHANG Zhi-tao, ZHANG Qiu-yu, YANG Ning, LUO Lin-yu, HUANG Jia-liang, YAO Yi-fei. Time Lag Effect between Winter Wheat Canopy Temperature and Atmospheric Temperature and Its Influencing Factors[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(11): 359-368.
Citation: ZHANG Zhi-tao, ZHANG Qiu-yu, YANG Ning, LUO Lin-yu, HUANG Jia-liang, YAO Yi-fei. Time Lag Effect between Winter Wheat Canopy Temperature and Atmospheric Temperature and Its Influencing Factors[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(11): 359-368.

冬小麦冠层温度对大气温度的时滞效应与影响因素研究

基金项目: 

国家自然科学基金项目(51979232、52279047、52179045)

详细信息
    作者简介:

    张智韬(1976—),男,教授,博士生导师,主要从事遥感技术在节水灌溉及水资源中的应用研究,E-mail:zhitaozhang@126.com

  • 中图分类号: S512.11

Time Lag Effect between Winter Wheat Canopy Temperature and Atmospheric Temperature and Its Influencing Factors

  • 摘要: 冠气温差能够间接监测作物水分变化规律,而冠层温度与大气温度之间存在的时滞效应会影响监测效果,为探明两者之间的时滞效应变化规律及影响因素,本研究以拔节期至乳熟期的冬小麦为研究对象,利用红外温度传感器连续监测灌溉上限分别为田间持水率的95%(T1)、80%(T2)、65%(T3)和50%(T4)4个不同灌溉处理的冠层温度,并同步获取短波净辐射(Short-wave net radiation,RS)、大气温度(Atmospheric temperature,TA)、相对湿度(Relative humidity,RH)等气象数据。利用错位相关法计算冠层温度与大气温度之间的时滞时间(Time lag,TL),分析其在不同生育期和不同灌溉条件下变化规律,并采用相关性分析法探究气象因子(RS、TA、RH)变化率和日均值与时滞时间的相关性,最后通过通径分析探讨气象因子(RS、TA、RH)、土壤含水率(Soil moisture content, SMC)以及叶面积指数(Leaf area index, LAI)对时滞时间的共同影响。结果表明:不同生育期和不同灌溉条件下冬小麦冠层温度变化均提前于大气温度;在不同灌溉处理下,T1、T2和T3处理的时滞时间高于T4处理,且在不同生育期下,时滞时间呈现先减少再增加的趋势。短波净辐射变化率(Change rate of short-wave net radiation,RSCR)、大气温度变化率(Change rate of atmospheric temperature,TACR)和相对湿度变化率(Change rate of relative humidity,RHCR)与时滞时间的相关性均高于对应日均值与时滞时间的相关性;同时,RSCR与时滞时间的相关程度最高(相关系数R为0.718~0.806),TACR次之(R为0.582~0.661),RHCR最低(R为-0.534~-0.570)。利用通径分析发现,时滞时间主要受RSCR、SMC以及LAI共同影响,但在不同灌溉条件下影响时滞时间的主要因素存在差异,其中T1、T2和T3处理主要受RSCR和LAI影响,而T4主要受RSCR和SMC影响。研究可为利用冠气温差信息监测作物水分变化进一步提供理论依据。
    Abstract: Canopy-air temperature difference can indirectly monitor the variation of crop moisture, and the time lag effect between canopy temperature and atmospheric temperature will affect the monitoring effect. In order to explore the characteristics and influencing factors of the time lag effect between canopy temperature and atmospheric temperature, winter wheat from jointing stage to ripening stage was used as the research object. The infrared temperature sensor was used to continuously monitor the canopy temperature of four different irrigation treatments with irrigation upper limits of 95%(T1), 80%(T2), 65%(T3) and 50%(T4) of field water capacity, and simultaneously obtained meteorological data such as short-wave net radiation(RS), atmospheric temperature(TA) and relative humidity(RH). The time lag between canopy temperature and atmospheric temperature was calculated by dislocation correlation method, and its variation characteristics under different growth stages and different irrigation conditions were analyzed. The correlation analysis method was used to explore the correlation between the change rate and daily mean value of meteorological factors(RS, TA, RH ) and time lag. Finally, the common influence of meteorological factors(RS, TA, RH), soil moisture content(SMC) and leaf area index(LAI) on time lag was discussed by path analysis. The results showed that the change of winter wheat canopy temperature was ahead of the atmospheric temperature under different growth stages and different irrigation conditions; under different irrigation treatments, the lag time of T1, T2 and T3 treatments was higher than that of T4 treatment, and the lag time was decreased firstly and then increased at different growth stages. The correlation between the change rate of shortwave net radiation(RSCR), the change rate of atmospheric temperature(TACR) and the change rate of relative humidity(RHCR) and the time lag was higher than that between the corresponding daily mean and the time lag. At the same time, the correlation between RSCR and lag time was the highest(R=0.718~0.806), followed by TACR(R=0.582~0.661) and RHCR(R=-0.534~-0.570). Path analysis showed that the lag time was mainly affected by RSCR, SMC and LAI, but the main factors affecting the lag time were different under different irrigation conditions. T1, T2 and T3 treatments were mainly affected by RSCR and LAI, while T4 was mainly affected by RSCR and SMC. The research result can provide a theoretical basis for monitoring crop water changes by using canopy temperature difference information.
  • [1] 董振国.作物层温度与土壤水分的关系[J].科学通报,1986(8):608-610.
    [2] 蔡焕杰,康绍忠.棉花冠层温度的变化规律及其用于缺水诊断研究[J].灌溉排水,1997(1):2-6.
    [3]

    JACKSON R D,IDSO S B,REGINATO R J,et al.Canopy temperature as a crop water stress indicator[J].Water Resources Research,1981,17(4):1133-1138.

    [4] 邓聪,吴志祥,谭正洪,等.海南岛西部橡胶人工林冠层温度变化及其与微气象要素的关系[J].热带作物学报,2020,41(7):1490-1497.DENG Cong,WU Zhixiang,TAN Zhenghong,et al.Variations of canopy temperature in a rubber plantation in western Hainan island and their relations with micrometeorological factors[J].Chinese Journal of Tropical Crops,2020,41(7):1490-1497.(in Chinese)
    [5] 史长丽,郭家选,梅旭荣,等.夏玉米农田表面温度影响因素分析[J].中国农业科学,2006,39(1):48-56.SHI Changli,GUO Jiaxuan,MEI Xurong,et al.Analysis of the factors influencing surface temperature in summer maize field[J].Scientia Agricultura Sinica,2006,39(1):48-56.(in Chinese)
    [6] 邓强辉,潘晓华,石庆华.作物冠层温度的研究进展[J].生态学杂志,2009,28(6):1162-1165.DENG Qianghui,PAN Xiaohua,SHI Qinghua.Research advances on crop canopy temperature[J].Chinese Journal of Ecology,2009,28(6):1162-1165.(in Chinese)
    [7]

    BIAN J,ZHANG Z,CHEN J,et al.Simplified evaluation of cotton water stress using high resolution unmanned aerial vehicle thermal imagery[J].Remote Sensing,2019,11(3):267.

    [8] 刘奇,张智韬,刘畅,等.基于无人机遥感的夏玉米水分胁迫指数改进方法[J].农业工程学报,2023,39(2):68-77.LIU Qi,ZHANG Zhitao,LIU Chang,et al.Improved method of crop water stress index based on UAV remote sensing[J].Transactions of the CSAE,2023,39(2):68-77.(in Chinese)
    [9]

    HAN M,ZHANG H,DEJONGE K C,et al.Comparison of three crop water stress index models with sap flow measurements in maize[J].Agricultural Water Management,2018,203:366-375.

    [10] 张智韬,许崇豪,谭丞轩,等.覆盖度对无人机热红外遥感反演玉米土壤含水率的影响[J].农业机械学报,2019,50(8):213-225.ZHANG Zhitao,XU Chonghao,TAN Chengxuan,et al.Influence of coverage on soil moisture content of field corn inversed from thermal infrared remote sensing of UAV[J].Transactions of the Chinese Society for Agricultural Machinery,2019,50(8):213-225.(in Chinese)
    [11] 张智韬,许崇豪,谭丞轩,等.基于无人机热红外遥感的玉米地土壤含水率诊断方法[J].农业机械学报,2020,51(3):180-190.ZHANG Zhitao,XU Chonghao,TAN Chengxuan,et al.Diagnosing method of soil moisture content in corn field based on thermal infrared remote sensing of UAV[J].Transactions of the Chinese Society for Agricultural Machinery,2020,51(3):180-190.(in Chinese)
    [12] 韩文霆,张立元,牛亚晓,等.无人机遥感技术在精量灌溉中应用的研究进展[J].农业机械学报,2020,51(2):1-14.HAN Wenting,ZHANG Liyuan,NIU Yaxiao,et al.Review on UAV remote sensing application in precision irrigation[J].Transactions of the Chinese Society for Agricultural Machinery,2020,51(2):1-14.(in Chinese)
    [13]

    BIJU S,FUENTES S,GUPTA D.The use of infrared thermal imaging as a non-destructive screening tool for identifying drought-tolerant lentil genotypes[J].Plant Physiol Biochem,2018,127:11-24.

    [14] 陈仲新,任建强,唐华俊,等.农业遥感研究应用进展与展望[J].遥感学报,2016,20(5):748-767.CHEN Zhongxin,REN Jianqiang,TANG Huajun,et al.Progress and perspectives on agricultural remote sensing research and applications in China[J].Journal of Remote Sensing,2016,20(5):748–767.(in Chinese)
    [15] 李志军,于广多,刘奇,等.环境因子与玉米生长对地表温度监测土壤水分的影响[J].农业工程学报,2022,38(20):77-85.LI Zhijun,YU Guangduo,LIU Qi,et al.Effects of environmental factors and maize growth on surface temperature to monitor soil water contents[J].Transactions of the CASE,2022,38(20):77-85.(in Chinese)
    [16] 张智韬,吴天奎,于广多,等.夏玉米冠层温度变化的时滞效应及其对土壤水分监测的影响[J].农业工程学报,2022,38(1):117-124.ZHANG Zhitao,WU Tiankui,YU Guangduo,et al.Time delay effect of summer maize canopy temperature change and its influence on soil moisture content monitoring[J].Transactions of the CASE,2022,38(1):117-124.(in Chinese)
    [17]

    HUANG J L,WANG S,GUO Y H,et al.Hysteresis between winter wheat canopy temperature and atmospheric temperature and its driving factors[J].Plant and Soil,2022:1-17.

    [18]

    LU C G,XIA S J,CHEN J,et al.Plant temperature and its simulation model of thermo-sensitive genic male sterile rice[J].Rice Science,2008,15(3):223–231.

    [19]

    RICOTTA C,AVENA G C,TEGGI S.Relation between vegetation canopy surface temperature and the sun-surface geometry in a mountainous region of central Italy[J].International Journal of Remote Sensing,1997,18(14):3091-3096.

    [20] 狄艳,高懋芳,李强,等.不同灌溉梯度下冬小麦冠层温度与土壤水分关系研究[J].中国农业信息,2021,33(2):13-23.DI Yan,GAO Maofang,LI Qiang,et al.Study on the relationship between winter wheat canopy temperature and soil moisture under different irrigation gradients[J].China Agricultural Informatics,2021,33(2):13-23.(in Chinese)
    [21]

    ZHANG R F,XU X L,LIU M X,et al.Comparing ET-VPD hysteresis in three agroforestry ecosystems in a subtropical humid karst area[J].Agricultural Water Management,2018,208:454-464.

    [22]

    BO X D,DU T S,DING R S,et al.Time lag characteristics of sap flow in seed-maize and their implications for modeling transpiration in an arid region of Northwest China[J].Journal of Arid Land,2017,9(4):515-529.

    [23]

    JIANG S Z,ZHAO L,LIANG C,et al.Leaf- and ecosystem-scale water use efficiency and their controlling factors of a kiwifruit orchard in the humid region of Southwest China[J].Agricultural Water Management,2022,260:107329.

    [24] 范军亮,王涵,廖振棋,等.基于纹理-颜色特征与植被指数融合的冬小麦LAI估测[J].农业机械学报,2023,54(7):347-359.FAN Junliang,WANG Han,LIAO Zhenqi,et al.Winter wheat leaf area index estimation based on texture-color features and vegetation indices[J].Transactions of the Chinese Society for Agricultural Machinery,2023,54(7):347-359 (in Chinese)
    [25]

    FANG H L,BARET F,PLUMMER S,et al.An overview of global leaf area index (LAI):methods,products,validation,and applications[J].Reviews of Geophysics,2019,57(3):739-799.

    [26] 刘家霖,满秀玲,胡悦.兴安落叶松天然林不同分化等级林木树干液流对综合环境因子的响应[J].林业科学研究,2016,29(5):726-734.LIU Jialin,MAN Xiuling,HU Yue.Response of tree sap flow of Larix gmelinii with various differentiation classes to multiple environmental factors[J].Forest Research,2016,29(5):726-734.(in Chinese)
    [27]

    PHILLIPS N,NAGCHAUDHURI A,OREN R,et al.Time constant for water transport in loblolly pine trees estimated from time series of evaporative demand and stem sapflow[J].Trees,1997,11(7):412-419.

    [28]

    ZHANG R F,XU X L,LIU M X,et al.Hysteresis in sap flow and its controlling mechanisms for a deciduous broad-leaved tree species in a humid karst region[J].Science China Earth Sciences,2019,62(11):1744-1755.

    [29] 郭相平,高爽,吴梦洋,等.中国农作物水足迹时空分布与影响因素分析[J].农业机械学报,2018,49(5):295-302.GUO Xiangping,GAO Shuang,WU Mengyang,et al.Analysis of temporal-spatial distribution and influencing factors of water footprint in crop production system of China[J].Transactions of the Chinese Society for Agricultural Machinery,2018,49(5):295-302.(in Chinese)
    [30] 于广多.基于无人机遥感的夏玉米田间土壤含水率监测指数研究[D].杨凌:西北农林科技大学,2022.YU Guangduo.Monitoring index study of soil water content in summer maize fields based on UAV remote sensing data[D].Yangling:Northwest A&F University,2022.(in Chinese)
    [31] 汪志农.灌溉排水工程学[M].2版.北京:中国农业出版社,2013.
    [32]

    TUZET A,PERRIER A,LEUNING R.A coupled model of stomatal conductance,photosynthesis and transpiration[J].Plant,Cell and Environment,2003,26(7):1097-1116.

    [33]

    TONG B,GUO J P,XU H,et al.Effects of soil moisture,net radiation,and atmospheric vapor pressure deficit on surface evaporation fraction at a semi-arid grass site[J].Science of the Total Environment,2022,849:157890.

    [34] 孙晨娜,张晶,鲁志云,等.哀牢山亚热带常绿阔叶林冠层温度变化特征[J].应用与环境生物学报,2023,29(1):197-203.SUN Chenna,ZHANG Jing,LU Zhiyun,et al.Characteristics of canopy temperature in a subtropical evergreen broadleaf forest in Ailao Mountain[J].Chinese Journal Applied and Environmental Biology,2023,29(1):197-203.(in Chinese)
    [35] 吴天奎.作物冠层温度变化及其对环境因子的滞后效应分析[D].杨凌:西北农林科技大学,2022.WU Tiankui.Analysis of crop canopy temperature variation and its hysteresis effect to environmental factors[D].Yangling:Northwest A&F University,2022.(in Chinese)
    [36] 王城城,叶文伟,赵从举,等.热带桉树树干液流的时滞效应分析[J].灌溉排水学报,2022,41(1):25-32.WANG Chengcheng,YE Wenwei,ZHAO Congju,et al.Sap flow in the stem of Eucalyptus and changes in meteorological factors are not consistent[J].Journal of Irrigation and Drainage,2022,41(1):25-32.(in Chinese)
    [37]

    ZHANG Q,MANZONI S,KATUL G,et al.The hysteretic evapotranspiration-vapor pressure deficit relation[J].Journal of Geophysical Research:Biogeosciences,2014,119(2):125-140.

    [38] 王瑛,刘美君,杜盛.树干液流时滞特征及影响因素研究进展[J].应用与环境生物学报,2023,29(2):507-514.WANG Ying,LIU Meijun,DU Sheng.Research progress in the characteristics and driving factors of time lags in stem sap flow[J].Chinese Journal Applied and Environmental Biology,2023,29(2):507-514.(in Chinese)
    [39]

    XU S Q,YU Z B.Environmental control on transpiration:a case study of a desert ecosystem in Northwest China[J].Water,2020,12(4):1211.

    [40]

    HONG L,GUO J B,LIU Z B,et al.Time-lag effect between sap flow and environmental factors of larix principis-rupprechtii Mayr[J].Forests,2019,10(11):971.

    [41]

    WULLSCHLEGER S D,HANSON P J,TSCHAPLINSKI T J.Whole-plant water flux in understory red maple exposed to altered precipitation regimes[J].Tree Physiol,1998,18(2):71-79.

    [42] 梅婷婷,赵平,倪广艳,等.树木胸径大小对树干液流变化格局的偏度和时滞效应[J].生态学报,2012,32(22):7018-7026.MEI Tingting,ZHAO Ping,NI Guangyan,et al.Effect of stem diameter at breast height on skewness of sap flow pattern and time lag[J].Acta Ecologica Sinica,2012,32(22):7018-7026.(in Chinese)
计量
  • 文章访问数:  1
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-26
  • 刊出日期:  2023-11-24

目录

    /

    返回文章
    返回