Estimation of Photosynthetic Parameters of Cinnamomum camphora in Dwarf Forest Based on UAV Multi-spectral Remote Sensing
-
摘要: 为探讨应用无人机多光谱技术估算矮林芳樟(Cinnamomum camphora(Linn.)Presl)光合参数的有效分析模型和方法,本研究以矮林芳樟为研究对象,通过无人机搭载的多光谱相机获取其冠层六波段光谱反射率,同步测量其净光合速率(Pn)、胞间二氧化碳浓度(Ci)、气孔导度(Gs)和蒸腾速率(Tr)4种光合参数,采用最佳指数因子(OIF)筛选光谱反射率和植被指数的组合作为自变量,分别采用偏最小二乘法(Partial least squares method, PLS)、反向传播神经网络(Back propagation neural network,BPNN)和随机森林(Random forest, RF)构建自变量与光合参数的估算模型,并分析比较各估算模型的精度。结果显示:矮林芳樟光合参数与叶片红边波段2(中心波长750 nm)和近红外波段(中心波长840 nm)反射率有密切关系;红边波段2、增强型植被指数2(EVI2)、红边叶绿素指数(CIrededge)组合的OIF值最大,为0.012 6,可作为模型自变量的最佳组合;Pn、Ci、Gs、Tr 4种光合参数的最优模型均为BPNN,其建模集决定系数R2分别为0.85、0.81、0.80、0.82,均方根误差(RMSE)分别为0.85μmol/(m2·s)、16.23μmol/mol、0.03 mol/(m2·s)、0.37 mmol/(m2·s),相对分析误差(RPD)分别为2.59、2.33、2.28、2.37;验证集R2为0.81、0.73、0.83、0.76,RMSE为1.46μmol/(m2·s)、18.37μmol/mol、0.03 mol/(m2·s)、0.67 mmol/(m2·s),RPD为1.39、1.86、2.67、1.20。研究结果可为无人机多光谱遥感矮林芳樟光合参数估测提供理论依据,为快速监测大面积经济植物生长状况提供技术支撑。Abstract: In order to explore an effective analytical model and method for estimating photosynthetic parameters of Cinnamomum camphora(Linn.) Presl by using unmanned aerial vehicle(UAV) multispectral technology, taking Cinnamomum camphora(Linn.) Presl as the research object, its canopy six-band spectral reflectance was obtained through a multispectral camera carried by UAV, and its net photosynthetic rate(Pn), intercellular carbon dioxide concentration(Ci), stomatal conductance(Gs) and transpiration rate(Tr) were simultaneously measured. The optimal index factor(OIF) was used to screen the combination of spectral reflectance and vegetation index as independent variables. Partial least squares method(PLS), back propagation neural network(BPNN), and random forest(RF) were used to construct estimation models for the independent variables and photosynthetic parameters, and the accuracy of each estimation model was analyzed and compared. The results showed that there was a close relationship between photosynthetic parameters and leaf reflectance in the red edge band 2(center wavelength 750 nm) and near infrared band(center wavelength 840 nm) of Cinnamomum camphora L. The combination of red edge band 2, enhanced vegetation index 2(EVI2), and red edge chlorophyll index(CIrededge) had the highest OIF value of 0.012 6, which can be used as the best combination of model independent variables. The optimal models for the four photosynthetic parameters Pn, Ci, Gs, and Tr were all BPNN, with the modeling set decision factors R~2 of 0.85, 0.81, 0.80, and 0.82, and the root mean square error(RMSE) of 0.85 μmol/(m~2·s), 16.23 μmol/mol, 0.03 mol/(m~2·s) and 0.37 mmol/(m~2·s). The relative analytical error(RPD) were 2.59, 2.33, 2.28, and 2.37, respectively. The R~2 of the validation set was 0.81, 0.73, 0.83, 0.76, and the RMSE was 1.46 μmol/(m~2·s), 18.37 μmol/mol, 0.03 mol/(m~2·s) and 0.67 mmol/(m~2·s), with RPD of 1.39, 1.86, 2.67, and 1.20, respectively. The research results can provide a theoretical basis for the estimation of photosynthetic parameters of Cinnamomum camphora in dwarf forests using UAV multispectral remote sensing, and provide technical support for rapid monitoring of the growth status of economic plants in large areas.
-
-
[1] LEE H J,HYUN E A,YOON W J,et al.In vitro anti-inflammatory and anti-oxidative effects of Cinnamomum camphora extracts[J].Journal of Ethnopharmacology,2006,103(2):208-216.
[2] ZHOU H,HUANG R,SU T,et al.A c-MWCNTs/AuNPs-based electrochemical cytosensor to evaluate the anticancer activity of pinoresinol from Cinnamomum camphora against HeLa cells[J].Bioelectrochemistry,2022,146:108133.
[3] 肖祖飞,艾卿,金志农,等.芳樟矮林生长节律及精油动态变化研究[J].江西农业大学学报,2021,43(4):834-841.XIAO Zufei,AI Qing,JIN Zhinong,et al.Study on growth rhythm and dynamic changes of essential oils in Falpine dwarf forest[J].Journal of Jiangxi Agricultural University,2021,43(4):834-841.(in Chinese) [4] YU Y,DONG J,WANG Y,et al.RNA-seq analysis of antibacterial mechanism of Cinnamomum camphora essential oil against Escherichia coli[J].PeerJ,2021,9(6103):e11081.
[5] ZHU X G,LONG S P,ORT D R.Improving photosynthetic efficiency for greater yield[J].Annu Rev Plant Biol,2010,61:235-261.
[6] FURUMI S,XIONG Y,FUJIWARA N.Establishment of an algorithm to estimate vegetation photosynthesis by pattern decomposition using multi-spectral data[J].Journal of the Remote Sensing Society of Japan,2009,25:47-59.
[7] 汪本福,黄金鹏,姜仕,等.“叶之缘”光合作用生物增效剂在水稻上的应用效果研究[J].湖北农业科学,2012,51(11):2180-2183.WANG Benfu,HUANG Jinpeng,JIANG Shi,et al.Application effect of photosynthetic biosynergist on rice[J].Hubei Agricultural Sciences,2012,51(11):2180-2183.(in Chinese) [8] 李子唯.三七对重金属镉的富集效应及其生理机制研究[D].昆明:昆明理工大学,2017.LI Ziwei.Study on the enrichment effect and physiological mechanism of Panax notoginseng on heavy metal cadmium[D].Kunming :Kunming University of Science and Technology,2017.(in Chinese) [9] 王来刚,贺佳,郑国清,等.基于无人机多光谱遥感的玉米FPAR估算[J].农业机械学报,2022,53(10):202-210.WANG Laigang,HE Jia,ZHENG Guoqing,et al.Estimation of maize FPAR based on UAV multispectral remote sensing[J].Transactions of the Chinese Society for Agricultural Machinery,2022,53(10):202-210.(in Chinese) [10] 汪旭,邓裕帅,练雪萌,等.基于无人机多光谱技术的甜菜冠层叶绿素含量反演[J].中国糖料,2022,44(4):36-42.WANG Xu,DENG Yushuai,LIAN Xuemeng,et al.Inversion of chlorophyll content in sugar beet canopy based on UAV multispectral technology[J].China Sugar,2022,44(4):36-42.(in Chinese) [11] 徐云飞.基于无人机多光谱遥感的冬小麦参数反演及综合长势监测[D].淮南:安徽理工大学,2022.XU Yunfei.Parameter inversion and comprehensive growth monitoring of winter wheat based on UAV multispectral remote sensing[D].Huainan:Anhui University of Science and Technology,2022.(in Chinese) [12] 陈俊英,陈硕博,张智韬,等.无人机多光谱遥感反演花蕾期棉花光合参数研究[J].农业机械学报,2018,49(10):230-239.CHEN Junying,CHEN Shuobo,ZHANG Zhitao,et al.Investigation on photosynthetic parameters cotton during budding period by multi-spectral remote sensing of unmanned aerial[J].Transactions of the Chinese Society for Agricultural Machinery,2018,49(10):230-239.(in Chinese) [13] 江洪,王钦敏,汪小钦.福建省长汀县植被覆盖度遥感动态监测研究[J].自然资源学报,2006,21(1):126-132,166.JIANG Hong,WANG Qinmin,WANG Xiaoqin.Dynamic monitoring of vegetation coverage in Changting County,Fujian Province[J].Journal of Natural Resources,2006,21(1):126-132,166.(in Chinese) [14] MANGEWA L J,NDAKIDEMI P A,ALWARD R D,et al.Comparative assessment of UAV and Sentinel-2 NDVI and GNDVI for preliminary diagnosis of habitat conditions in Burunge Wildlife Management Area,Tanzania[J].Earth,2022,3(3):769-787.
[15] 谭丞轩.基于无人机多光谱遥感的大田玉米土壤含水率估算模型研究[D].杨凌:西北农林科技大学,2020.TAN Chengxuan.Research on soil moisture content estimation model of field maize based on UAV multispectral remote sensing[D].Yangling:Northwest A&F University,2020.(in Chinese) [16] BURKE M W V,RUNDQUIST B C.Scaling PhenoCam GCC,NDVI,and EVI2 with harmonized Landsat-Sentinel using Gaussian processes[J].Agricultural and Forest Meteorology,2021,300:108316.
[17] MURAMATSU K.Use of chlorophyll index-green and the red-edge chlorophyll index to derive an algorithm for estimating gross primary production capacity[C]// Remote Sensing for Agriculture,Ecosystems,and Hydrology XXI,2019.
[18] 陈天宇.基于可测量数据的实验装置动力学结构重构[D].北京:北京邮电大学,2018.CHEN Tianyu.Dynamic structure reconstruction of experimental device based on measurable data[D].Beijing:Beijing University of Posts and Telecommunications,2018.(in Chinese) [19] CHAVEZ P S,BERLIN G L,SOWERS L B.Statistical-method for selecting Landsat MSS ratios[J].Journal of Applied Photographic Engineering,1982,8(1):23-30.
[20] 赵庆展,刘伟,尹小君,等.基于无人机多光谱影像特征的最佳波段组合研究[J].农业机械学报,2016,47(3):242-248,291.ZHAO Qingzhan,LIU Wei,YIN Xiaojun,et al.Research on optimal band combination based on UAV multispectral image features[J].Transactions of the Chinese Society for Agricultural Machinery,2016,47(3):242-248,291.(in Chinese) [21] 裴欢,孙天娇,王晓妍.基于Landsat 8 OLI影像纹理特征的面向对象土地利用/覆盖分类[J].农业工程学报,2018,34(2):248-255.PEI Huan,SUN Tianjiao,WANG Xiaoyan.Object-oriented land use/cover classification based on texture features of Landsat 8 OLI images[J].Transactions of the CSAE,2018,34(2):248-255.(in Chinese) [22] 王锐.净套作大豆叶片光谱响应特征及主要参数模型构建[D].成都:四川农业大学,2016.WANG Rui.Construction of spectral response characteristics and main parameter model of soybean leaves[D].Chengdu:Sichuan Agricultural University,2016.(in Chinese) [23] 陈卓.晋陕蒙接壤区成长型资源城市土地利用变化遥感监测[D].北京:中国地质大学(北京),2017.CHEN Zhuo.Remote sensing monitoring of urban land use change in growing resources in Jin-Shaanxi-Mongolia border area[D].Beijing:China University of Geosciences (Beijing),2017.(in Chinese) [24] ZHAO Huihui,LIU Peijia,QIAO Baojin,et al.The spatial distribution and prediction of soil heavy metals based on measured samples and multi-spectral images in Tai Lake of China[J].Land,2021,10(11):11-27.
[25] 陈昊,鞠昱,韩立,等.TDLAS技术中不同背景气体的混合气体浓度算法[J].光谱学与光谱分析,2020,40(10):3015-3020.CHEN Hao,JU Yu,HAN Li,et al.Mixed gas concentration algorithm of different background gases in TDLAS technology[J].Spectroscopy and Spectral Analysis,2020,40(10):3015-3020.(in Chinese) [26] 龚辉,夏乔浪,黄媛媛.近红外漫反射技术快速检测黄酒酒醅中酒精度[J].酿酒科技,2021(7):125-129.GONG Hui,XIA Qiaolang,HUANG Yuanyuan.Rapid detection of alcohol content in rice wine mash by near-infrared diffuse reflection technology[J].Brewing Science and Technology,2021(7):125-129.(in Chinese) [27] 许丽佳,陈铭,王玉超,等.高光谱成像的猕猴桃糖度无损检测方法[J].光谱学与光谱分析,2021,41(7):2188-2195.XU Lijia,CHEN Ming,WANG Yuchao,et al.Nondestructive detection method of kiwifruit sugar content with hyperspectral imaging[J].Spectroscopy and Spectral Analysis,2021,41(7):2188-2195.(in Chinese) [28] 陈硕博.无人机多光谱遥感反演棉花光合参数与水分的模型研究[D].杨凌:西北农林科技大学,2019.CHEN Shuobo.Model study on photosynthetic parameters and moisture of UAV multispectral remote sensing inversion cotton[D].Yangling:Northwest A&F University,2019.(in Chinese) [29] 左雪燕,崔丽娟,李伟,等.基于高光谱数据的互花米草叶片功能性状反演[J].生态学报,2021,41(15):6159-6169.ZUO Xueyan,CUI Lijuan,LI Wei,et al.Inversion of functional traits of Spartina alterniflora based on hyperspectral data[J].Acta Ecologica Sinica,2021,41(15):6159-6169.(in Chinese) [30] 李诗瑶,丛士翔,王融融,等.基于无人机多光谱遥感的干旱胁迫下玉米冠层SPAD值监测[J].干旱区地理,2023,46(7):1121-1132.LI Shiyao,CONG Shixiang,WANG Rongrong,et al.Monitoring of SPAD value of maize canopy under drought stress based on UAV multispectral remote sensing[J].Arid Land Geography,2023,46(7):1121-1132.(in Chinese) [31] 邱春荣.油菜高光谱特征信息融合与建模研究[D].长沙:湖南农业大学,2019.QIU Chunrong.Research on information fusion and modeling of hyperspectral characteristics of rapeseed[D].Changsha:Hunan Agricultural University,2019.(in Chinese) [32] 穆海蓉,丁丽萍,宋宇宁,等.DiffPRFs:一种面向随机森林的差分隐私保护算法[J].通信学报,2016,37(9):175-182.MU Hairong,DING Liping,SONG Yuning,et al.DiffPRFs:a differential privacy protection algorithm for random forest[J].Journal on Communications,2016,37(9):175-182.(in Chinese) [33] 郭凤娟.应用红外光谱和化学计量学进行疾病诊断及甘草指标成分含量测定的研究[D].广州:广东药科大学,2017.GUO Fengjuan.Research on disease diagnosis and determination of licorice index components using infrared spectroscopy and chemometrics[D].Guangzhou:Guangdong Pharmaceutical University,2017.(in Chinese) [34] 陈春俊,杨露,何智颖,等.ARIMA-BP神经网络高速列车隧道压力波预测模型研究[J].中国测试,2021,47(10):80-86.CHEN Chunjun,YANG Lu,HE Zhiying,et al.Research on pressure wave prediction model of ARIMA-BP neural network high-speed train tunnel[J].China Test,2021,47(10):80-86.(in Chinese)
计量
- 文章访问数: 0
- HTML全文浏览量: 0
- PDF下载量: 1