高级检索+

电动装载机电液复合制动协同控制策略研究

Collaborative Control Strategy of Composite Braking for Electric Loader

  • 摘要: 针对电动装载机的电液复合制动系统,为满足多工况制动需求以及保障制动安全性,本文提出了一种基于再生制动自由行程液压制动阀的电动装载机液压制动系统。结合电动装载机的理想前后轮制动力分配曲线以及制动意图识别得到的制动强度,制定了制动强度与整车制动力矩需求的分配曲线;为进一步提高再生制动力与液压制动力分配的协调性,同时兼顾制动能量回收效率,提出了一种基于行走再生制动和液压制动的电液复合制动协同控制策略,降低了整车总制动力矩波动,保证了制动模式切换的平顺性。最后,搭建了基于AMESim-Matlab/Simulink联合仿真模型,并搭建试验样机,验证了电动装载机复合制动协同控制策略的可行性,结果表明,该系统能量回收效率可达71.6%,制动回收率可达44.5%,一个工作循环实现节能7.6%,说明本文提出的控制策略具有良好的制动性能和能量回收效率。

     

    Abstract: Considering the electro-hydraulic composite braking system of electric loader, a hydraulic braking system based on hydraulic brake valve with regenerative braking free stroke was proposed to meet the braking requirements of multi-working conditions and ensure braking safety. The stroke of hydraulic brake valve was divided into motor regenerative brake free stroke and hydraulic brake stroke, which was one of the judgment conditions for hydraulic brake system intervention. Based on the ideal curves of front and rear wheel braking force distribution for electric loader and the braking strength obtained from the braking intention identification, a distribution curve between braking intensity and the vehicle torque demand was developed. To further improve the coordination of distribution for regenerative braking force and hydraulic braking force while taking into account energy recovery efficiency, a collaborative control strategy of electro-hydraulic composite braking was proposed. When hydraulic braking system was involved, the regenerative braking torque was changed with the hydraulic braking torque, reducing the fluctuation of vehicle total braking torque and ensuring smoothness during the braking mode switching process. Finally, the co-simulation model based on AMESim-Matlab/Simulink was studied, and an experimental prototype was built to verify the feasibility of collaborative control strategy of composite braking for electric loader. The results showed that the energy recovery efficiency was up to 71.6%, the recovery rate of braking was up to 44.5%, and the energy saving was up to 7.6% in one working cycle. The proposed control strategy had good braking performance and energy recovery efficiency.

     

/

返回文章
返回