高级检索+

果园滑动转向机器人轮胎动力学参数实时估计方法

毕松, 韩奕非

毕松, 韩奕非. 果园滑动转向机器人轮胎动力学参数实时估计方法[J]. 农业机械学报, 2023, 54(8): 110-121,192.
引用本文: 毕松, 韩奕非. 果园滑动转向机器人轮胎动力学参数实时估计方法[J]. 农业机械学报, 2023, 54(8): 110-121,192.
BI Song, HAN Yi-fei. Real-time Estimation Method of Tire Dynamics Parameters for Sliding Steering Robots in Orchards[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(8): 110-121,192.
Citation: BI Song, HAN Yi-fei. Real-time Estimation Method of Tire Dynamics Parameters for Sliding Steering Robots in Orchards[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(8): 110-121,192.

果园滑动转向机器人轮胎动力学参数实时估计方法

基金项目: 

国家重点研发计划项目(2018YFC1602701)

北方工业大学1138工程项目(110051360022XN108)

北京市大学生创新创业计划项目

详细信息
    作者简介:

    毕松(1983—),男,副教授,博士,主要从事智能农机装备研究,E-mail:bisongo@163.com

  • 中图分类号: S24;TP242

Real-time Estimation Method of Tire Dynamics Parameters for Sliding Steering Robots in Orchards

  • 摘要: 受果园路面起伏及轮胎附着能力变化影响,滑动转向轮式机器人轮胎的垂直载荷及侧向力参数变化大且难以实时估计,针对现有滑动转向控制器设计时对轮胎动力学参数进行简化,从而导致机器人姿态控制稳定性低的问题,本文提出了非铺装路面滑动转向轮式机器人轮胎垂直载荷实时估计方法和轮胎驱动力实时估计及优化分配算法。首先,提出了适用于滑动转向过程静力学计算的理想平面以及基于该平面的四轮垂直载荷估计方法;其次,提出了基于Fiala轮胎动力学模型的小侧偏角侧向力估计方法;再次,建立了滑动转向轮式机器人坡道稳态动力学方程和轮胎实时驱动力估计方法;最后,基于轮胎利用率构造轮胎驱动力最优实时分配模型。为验证本文方法,建立了基于ADAMS的滑动转向轮式机器人动力学模型进行对比验证,并且对垂直载荷以及侧向力估计方法搭建了检测装置进行实际验证。实际验证结果表明,轮胎垂直载荷实时估计方法准确率为95%以上,侧向力实时估计方法准确率为85%以上,基于轮胎垂直载荷以及侧向力的轮胎驱动力优化方法使轮胎利用率从96.25%降低至93.75%,提高了轮胎附着裕量和姿态控制稳定性。
    Abstract: The vertical load and lateral force parameters of sliding steering wheeled robot tires vary greatly and are difficult to estimate in real time due to the influence of orchard road surface undulations and tire adhesion capacity changes. The existing sliding steering controller is designed to simplify the tire dynamics parameters, which leads to the problem of low stability of robot attitude control. A real-time estimation method for the vertical load of sliding steering wheeled robot tires on unpaved roads and an algorithm for real-time estimation and optimal distribution of tire driving force were proposed. Firstly, an ideal plane for the static calculation of the sliding steering process and a four-wheel vertical load estimation method based on this plane were proposed; secondly, a small lateral deflection angle lateral force estimation method based on the Fiala wheel-tire dynamics model was proposed; and the steady-state dynamics equations of the sliding steering wheeled robot ramp and the real-time tire drive force estimation method were established; finally, the optimal real-time distribution model of the driving force was constructed based on the tire utilization rate. In order to verify the method, an ADAMS-based sliding steering wheeled robot dynamics model was developed for comparison and a testing device was built to verify the vertical load and lateral force estimation methods. The results showed that the accuracy of the real-time tire vertical load estimation method was more than 95% and the accuracy of the real-time lateral force estimation method was more than 85%, and the tire drive force optimization method based on the tire vertical load and lateral force reduced the tire utilization rate from 96.25% to 93.75%, which improved the tire adhesion margin and attitude control stability.
  • [1] 封永.基于激光雷达传感器的农业机器人车辆地头转向研究[D].南京:南京农业大学,2016.FENG Yong.Headland turning for agricultural robot vehicles based on laser radar sensor[D].Nanjing:Nanjing Agricultural University,2016.(in Chinese)
    [2] 李鑫,曹少波,杨欣,等.适于机械化作业的葡萄栽培技术规程研究[J].中国农机化学报,2017,38(2):120-123.LI Xin,CAO Shaobo,YANG Xin,et al.Cultivation technical regulations for grape suitable for mechanized operation[J].Journal of Chinese Agricultural Mechanization,2017,38(2):120-123.(in Chinese)
    [3] 程泽木,姜俊昭,蔡金文,等.基于轮胎六分力测试的PAC2002轮胎模型参数辨识方法研究[J].汽车实用技术,2018(15):61-64.CHENG Zemu,JIANG Junzhao,CAI Jinwen,et al.Research on PAC2002 tire model parameter identification method based on tire six component force test[J].Automobile Applied Technology,2018(15):61-64.(in Chinese)
    [4] 许洪国,马彬,许言.考虑轮胎和路面特性的车辆制动稳定性分析[J].哈尔滨工程大学学报,2013,34(10):1287-1293.XU Hongguo,MA Bin,XU Yan.Analysis of the vehicle braking stability considering the tire and pavement features[J].Journal of Harbin Engineering University,2013,34(10):1287-1293.(in Chinese)
    [5] 郁录平,张志友.滑移转向装载机的转向原理分析[J].工程机械,2001,32(6):24-26,64.YU Luping,ZHANG Zhiyou.Analysis of the steering principle of the skid steer loader[J].Construction Machinery and Equipment,2001,32(6):24-26,64.(in Chinese)
    [6] 张国君,杨世文.四轮车辆滑移转向结构条件分析[J].拖拉机与农用运输车,2007(4):22-24.ZHANG Guojun,YANG Shiwen.Geometrical condition analyses of four-wheel vehicle skid-steering[J].Tractor & Farm Transporter,2007(4):22-24.(in Chinese)
    [7] 任城钰,郑玉龙,孙致富,等.四轮滑移转向机器人行走分析[J].工程机械,2022,53(5):109-112,13.REN Chengyu,ZHENG Yulong,SUN Zhifu,et al.Motion analysis of a four-wheeled skid steering robot[J].Construction Machinery and Equispment,2022,53(5):109-112,13.(in Chinese)
    [8] 丁亮,高海波,郭军龙,等.轮式移动机器人滑转和滑移问题的地面力学解析[C]//第三十一届中国控制会议论文集C卷,2012.
    [9] 郭晓林,潘家平,于诏城.轮式车辆低速稳态滑移转向特性研究[J].农业装备与车辆工程,2012,50(12):27-30.GUO Xiaolin,PAN Jiaping,YU Zhaocheng.A study on stationary skid-steering performance of wheeled vehicles with low speed[J].Agricultural Equipment & Vehicle Engineering,2012,50(12):27-30.(in Chinese)
    [10] 闫永宝,张豫南,颜南明,等.六轮独立驱动滑动转向车辆运动控制算法仿真研究[J].兵工学报,2013,34(11):1461-1468.YAN Yongbao,ZHANG Yu’nan,YAN Nanming,et al.Simulation study of motion control algorithm for a six-wheel independent drive skid-steering vehicle[J].Acta Armamentarii,2013,34(11):1461-1468.(in Chinese)
    [11] 张高峰.轮式滑移装载机转向过程分析及仿真[D].太原:太原科技大学,2014.ZHANG Gaofeng.Analysis and simulation of steering process of wheeled skid steer loader[D].Taiyuan:Taiyuan University of Science & Technology,2014.(in Chinese)
    [12] 陈晋市,郑琦,霍东阳,等.桥荷分配对轮式滑移装载机行走系统性能的影响[J].吉林大学学报(工学版),2020,50(4):1235-1244.CHEN Jinshi,ZHENG Qi,HUO Dongyang,et al.Influence of axle load distribution on performance of wheeled skid-steer loader walking system[J].Journal of Jilin University(Engineering and Technology Edition),2020,50(4) :1235-1244.(in Chinese)
    [13] 颜春辉.分布式驱动电动汽车分工况转矩分配与控制研究[D].合肥:合肥工业大学,2020.YAN Chunhui.Torque distribution and control of distributed driving electric vehicles under different operation conditions[D].Hefei:Hefei University of Technology,2020.(in Chinese)
    [14] 鲁浩.基于瞬时转向中心实时估计的滑动转向车辆运动轨迹预测方法研究[D].北京:北京理工大学,2016.LU Hao.Trajectory prediction based on estimation of instanteous centers of rotation in real time for skid-steer vehicles[D].Beijing:Beijing Institute of Technology,2016.(in Chinese)
    [15] 白洋洋.滑移转向轮式机器人的定位方法研究[D].北京:北方工业大学,2019.BAI Yangyang.Study on a localization method for skid-steer wheeled robot[D].Beijing:North China University of Technology,2019.(in Chinese)
    [16] 洪濡,胡广地.滑移转向4WD车辆直接横摆力矩控制方法研究[J].汽车工程学报,2018,8(2):114-122,129.HONG Ru,HU Guangdi.A direct yaw moment control system for 4WD skid-steering vehicles[J].Chinese Journal of Automotive Engineering,2018,8(2):114-122,129.(in Chinese)
    [17]

    SEDAT D,LINO M.Power characterization of a skid-steered mobile field robot with an application to headland turn optimization[J].Journal of Intelligent & Robotic Systems,2019,93(3):601-615.

    [18]

    GÓRA K,KUJAWINSKI M,WRON'SΚΙD,et al.Comparison of energy prediction algorithms for differential and skid-steer drive mobile robots on different ground surfaces[J].Energies,2021,14(20):6722.

    [19]

    YACOUB M,ALI A.Propulsion dynamic requirements analysis for multi-axle skid-steer wheeled vehicles[C]//Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.Volume 4:22nd International Conference on Advanced Vehicle Technologies (AVT),2020.

    [20]

    MARTÍNEZ J L,MORALES J,GARCÍA J M.Analysis of tread ICRs for wheeled skid-steer vehicles on inclined terrain[J].IEEE Access,2023,11:547-555.

    [21]

    LIU Fangxu,LI Xueyuan,YUAN Shihua,et al.Slip-aware motion estimation for off-road mobile robots via multi-innovation unscented Kalman filter[J].IEEE Access,2020,8:43482-43496.

    [22] 周伟,李军,张世义,等.采用极值搜索算法估计附着系数的车辆驱动防滑控制[J].华侨大学学报(自然科学版),2019,40(6):701-706.ZHOU Wei,LI Jun,ZHANG Shiyi,et al.Vehicle acceleration slip regulation using extreme value search algorithm to estimate adhension coefficient[J].Journal of Huaqiao University(Natural Science),2019,40(6):701-706.(in Chinese)
    [23] 周斯加,罗玉涛,邓志君,等.基于自适应滤波的电动车纵向滑移率识别方法[J].交通与计算机,2007,136(3):70-74.
    [24] 邹广才,罗禹贡,李克强.基于全轮纵向力优化分配的4WD车辆直接横摆力矩控制[J].农业机械学报,2009,40(5):1-6.ZOU Guangcai,LUO Yugong,LI Keqiang.4WD vehicle DYC based on tire longitudinal forces optimization distribution[J].Transactions of the Chinese Society for Agricultural Machinery,2009,40(5):1-6.(in Chinese)
    [25] 黄志强,郑旺辉.Matlab实现ADAMS三维随机路面建模[J].现代防御技术,2018,46(3):165-170.HUANG Zhiqiang,ZHENG Wanghui.Modeling of ADAMS 3D random road with Matlab[J].Modern Defence Technology,2018,46(3):165-170.(in Chinese)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-17
  • 刊出日期:  2023-08-24

目录

    /

    返回文章
    返回