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Effect of Humus in Compost with Wood Vinegar Liquid and Biochar
Addition on Heavy Metal Passivation
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Abstract: Humus ( HS) is an important indicator of the nutrient quality of organic fertilisers. During the
composting process the addition of biochar and cotton straw wood vinegar liquid leads to changes in the
internal environment of the heap but the changes in the chemical properties of HS are not clear. The
morphology of heavy metals ( HMs) (e.g. Pb Cr Cd Ni) was detected by flame atomic absorber and
Fourier transform infrared spectroscopy ( FTIR) method and three-dimensional excitation-emission matrix
fluorescence spectroscopy ( 3D-EEM) were used to characterise the complexes of HS and HMs from
different angles. Meanwhile mathematical statistics correlation analysis and redundancy analysis
( RDA) were used to compare the decay indices ( temperature pH value) humification capacity ( HS

fulvic acid ( FA)  huminic acid ( HA) huminic acid and fulvic acid ratio ( H/F)) and functional
groups of the test groups. The results of the study showed that the wood vinegar liquid treatment could
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make the humification of the compost relatively high and the peak located at 876 ~ 835 em™' was
significantly enhanced indicating the accumulation of aromatic structure and the H/F finally reached
more than 2. 3 in all cases. The HS content of the T1 biochar treatment was located between T4 and T3
and the H/F finally reached 3.67. The passivation process of Cr by the Tl wvs exchange state final
passivation proportion to 2% . T4 treatment group in the Pb passivation process the proportion of the
final residue state was as high as 68% . Cd was more affected by T4 and eventually showed the transfer
of 2% 10% and 11% from the oxidation state to the exchange state reduction state and residue state
respectively. However the passivation of Ni by the addition of either biochar or wood vinegar liquid did
not show any significant trend during the stacking process and the proportions of exchange reduced
oxidized and residual states were stable at 1% ~2% 5% ~7% 26% ~ 35% and 56% ~ 68%
respectively indicating that the effect of HS on Ni was relatively small in this experiment. FTIR further
confirmed the role of HS as a core agronomic and carboxylaterich basic properties of functional
substances. The aromaticity of HS was gradually increased during the composting process which
enhanced the complexing ability with Pb  Cr and Cd ions. In addition it was found that the wood vinegar
liquid with a mass fraction of 1. 75% performed better overall in the composting process of the pig manure
base. In summary the following adsorption mechanisms existed for wood vinegar liquid and biochar: the
special functional groups of wood vinegar liquid complexed with HMs ions; biochar relied mainly on
adsorption with HMs; and the mechanism of Ni in composting may be more inclined to bind with nitrate
ions.

Key words: compost; humus; heavy metals; biochar; wood vinegar liquid; spectra
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1
Tab.1 Physico-chemical and chemical properties of composting raw materials and final composts
pH ( ) 1% ( ) 1% ( ) 1% /(mSecm ")
6.10 0. 02 51.00 £0. 35 1.30 £0. 02 36. 10 45.20 =0. 85 2.80 +0.01
7.20 £0.03 2.90 £0. 001 0.90 £0. 04 56.50 48.60 +0.3 —
4.60 £0.01 85.80 +£0.02 1.10 £0. 01 53.80 57.90 £0. 19 0.20 +£0.01
8.90 +0. 01 1.40 £0. 12 1.00 £0. 05 61.50 60.70 £0. 49 2.30 +0. 05
CK 6.76 £0. 06 44.20 +0. 06 3.08 +0. 35 18.77 27.51 £1.95 3.74 £0. 24
T1 7.82 +£0.07 27.60 £0. 01 3.60 +0. 27 18. 85 67.60 +£5. 88 3.46 +0.23
T2 7.24 £0.06 26.32 +0.01 3.24 £0. 12 22.96 74.28 £3.21 2.87 £0. 08
T3 7.50 £0. 18 32.06 £0.03 3.36 0. 35 17.61 58.56 £1.85 2.75 +0.13
T4 7.71 £0.09 26.31 £0.01 3.10 0. 05 16. 65 51.67 £1.4 2.35+0.21
T 0. 05 mol/L. NaOH 50 mL
60% 2d 42 d ( HA) o
7d N FA HA -
0 ( ) 3.7 ) 14.21 (TOC) o
( ) 28.35 ( ) 42 1.3 3D-EEM
( ) N 3D-EEM
3 o 100 ¢ o (
100 -3 o 0.1 g/mL) 1d pH 7
( MC) 105°C 24 h o 0.45 pm
HS o 10 mg/L, 200 ~ 500 nm
1:10 10 nm., 250 ~ 600 nm
pH 2 nm. 1200 nm/min
(TN) +HMs 5 nmo
0 1.4 HMs
1.2 HS HMs BCR B
HS HS . 1.5 FTIR
1.00 g 50 mL 30 mL FTIR
70°C . 1 mg KBr 1: 100
1h 4 000 r/min 10 min 10 MPa 0.5 mino, FTIR
50 mL ( Nexus870 Thermo Science )
3 1 4000 ~400 cm ™' 32
o 4em™'
0.1 mol/L NaOH 0.1 mol/L Na,P, 0, 1.6
Excel 2016  Origin 2019b
( HE) . .
pH 2
55°C 2.1 pH
(HU) , 30 mL 0.5 mol/L
H,S0, pH 1.3 70°C o
1.5h 4 h ( 1a) 3
50 mL : (1 ~3d <50C) . (3~
( FA) 24 d 50 ~ 65°C) (24 ~42d <50%C),
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1 pH

Fig.1 Trends of temperature and pH value during composting process
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2 HS
Fig.2 Changes in HS components
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3
Fig.3 3D-EEM spectra of compost samples during composting
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4 Cd.Cr.Ni.Pb

Fig.4 Distribution of heavy metal patterns
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FA-Cd.FA-Cr FA-Pb HA-Cd.HA-Cr
HA-Ph .
( RDA)
7 .
1.
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1 . 2 64. 6%
0.25% 64.9%( 7b); 1.
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Fig.6  Correlation of HS and its components with HMs ( 7d).
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7 HMs
Fig.7 RDA-=elated indicators of heavy metals
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