高级检索+

气液两相条件下叶片开孔对电潜泵性能和内部流场的影响

王通, 王健, 施卫东, 韩勇, 周岭

王通, 王健, 施卫东, 韩勇, 周岭. 气液两相条件下叶片开孔对电潜泵性能和内部流场的影响[J]. 排灌机械工程学报, 2024, 42(6): 548-555.
引用本文: 王通, 王健, 施卫东, 韩勇, 周岭. 气液两相条件下叶片开孔对电潜泵性能和内部流场的影响[J]. 排灌机械工程学报, 2024, 42(6): 548-555.
WANG Tong, WANG Jian, SHI Wei-dong, HAN Yong, ZHOU Ling. Effect of blade perforation on performance and internal flow field of electric submersible pump under gas-liquid two-phase conditions[J]. Journal of Drainage and Irrigation Machinery Engineering, 2024, 42(6): 548-555.
Citation: WANG Tong, WANG Jian, SHI Wei-dong, HAN Yong, ZHOU Ling. Effect of blade perforation on performance and internal flow field of electric submersible pump under gas-liquid two-phase conditions[J]. Journal of Drainage and Irrigation Machinery Engineering, 2024, 42(6): 548-555.

气液两相条件下叶片开孔对电潜泵性能和内部流场的影响

基金项目: 

国家自然科学基金资助项目(51979138)

江苏省杰出青年基金资助项目(BK20230011)

详细信息
    作者简介:

    王通(1987—),男,宁夏中宁人,高级工程师(wangtong3@cosl.com.cn),主要从事稠油开采和人工举升研究

    通讯作者:

    周岭(1986—),男,河南南阳人,研究员(lingzhou@ujs.edu.cn),主要从事流体机械内流机理研究

  • 中图分类号: TE933.3

Effect of blade perforation on performance and internal flow field of electric submersible pump under gas-liquid two-phase conditions

  • 摘要: 为了研究电潜泵内部流动机理,从而改善高含气工况下电潜泵的气液混输性能,文中基于欧拉-欧拉非均相流模型,对不同入口含气率工况下叶片开孔前后的气液两相流动特性进行了数值模拟分析,探究了气液两相流条件下叶片开孔对电潜泵性能和内部流场的影响.结果表明,在纯水工况以及低含气率、小流量工况下,叶片开孔会降低电潜泵性能;但是叶片开孔可以改善电潜泵在大流量下的气液混输性能.叶片开孔后会改变叶轮内部压力分布,使电潜泵叶轮内部平均压力升高,进而改善叶轮内部流态.叶片开孔后会冲散气相聚集,使气体分布更加均匀,叶轮流道内涡核分布明显减少,减少了能量耗散.该研究为改善电潜泵气液混输性能提供了理论依据.
    Abstract: In order to study the internal flow mechanism of the electric submersible pump, so as to improve the gas-liquid mixing performance of the electric submersible pump under high gas content conditions, numerical simulation based on the Eulerian-Eulerian non-homogeneous flow model was carried out to analyze the gas-liquid two-phase flow characteristics before and after the blade perforation. The effect of blade perforation on the performance and internal flow field of the electric submersible pump under the conditions of gas-liquid two-phase flow was investigated. The results show that in pure water environment, the blade perforation reduces the performance of the electric submersible pump under low gas content and small flow rate condition. However, the blade perforation can improve the gas-liquid mixing performance of the electric submersible pump under large flow rate. Blade perforation changes the pressure distribution inside the impeller, so that the average pressure inside the impeller of the electric submersible pump rises, thus improving the flow pattern inside the impeller. Blade perforation also disperses the gas-phase aggregation and makes the gas distribution more uniform. As a result, the distribution of vortex core in the impeller channel is significantly reduced, which reduces the energy dissipation. This study provides a theoretical basis for the subsequent improvement of the gas-liquid mixing performance of the electric submersible pump.
  • [1]

    AYDIN G.Production modeling in the oil and natural gas industry:an application of trend analysis[J].Petroleum science and technology,2014,32(5):555-564.

    [2]

    AZADEH A,TARVERDIAN S.Integration of genetic algorithm,computer simulation and design of experi-ments for forecasting electrical energy consumption[J].Energy policy,2007,35(10):5229-5241.

    [3]

    AYDIN H,MEREY S.Design of electrical submersible pump system in geothermal wells:a case study from West Anatolia,Turkey[J].Energy,2021,230:120891.

    [4]

    BULGARELLI N A V,BIAZUSSI J L,VERDE W M,et al.Experimental investigation on the performance of electrical submersible pump (ESP) operating with unstable water/oil emulsions[J].Journal of petroleum science and engineering,2021,197:107900.

    [5]

    YANG Y,ZHOU L,ZHOU H,et al.Optimal design of slit impeller for low specific speed centrifugal pump based on orthogonal test[J].Journal of marine science and engineering,2021,9(2):121.

    [6]

    CARIDAD J,KENYERY F.CFD analysis of electric submersible pumps (ESP) handling two-phase mixtures[J].Journal of energy resources technology,2004,126(2):99-104.

    [7]

    BARRIOS L J.Visualization and modeling of multiphase performance inside an electrical submersible pump[D].Tulsa:University of Tulsa,2007.

    [8]

    ZHANG J,CAI S,LI Y,et al.Visualization study of gas-liquid two-phase flow patterns inside a three-stage rotodynamic multiphase pump[J].Experimental thermal and fluid science,2016,70:125-138.

    [9]

    ZHOU L,HAN Y,LYV W,et al.Numerical calcula-tion of energy performance and transient characteristics of centrifugal pump under gas-liquid two-phase condi-tion[J].Micromachines,2020,11(8):728.

    [10] 方欣.电潜泵气液两相流瞬态特性数值分析[D].大庆:东北石油大学,2018.
    [11] 张开辉.气液条件下离心泵的气相分布特性分析及性能预测[J].广东水利水电,2022(1):66-76.ZHANG Kaihui.Analysis of gas phase distribution cha-racteristics and performance prediction of centrifugal pumps under gas-liquid conditions [J].Guangdong water conservancy and hydropower,2022(1):66-76.(in Chinese)
    [12] 万邦烈.电动潜油泵的发展前景[J].石油钻采机械通讯,1979,4:1-14.WAN Banglie.Prospects for the development of electric submersible oil pumps [J].Petroleum drilling machi-nery newsletter,1979,4:1-14.(in Chinese)
    [13] 吴绍伟,万小进,袁辉,等.高气油比条件下潜油电泵气体处理新技术研究[J].重庆科技学院学报(自然科学版),2015,18(3):90-93.WU Shaowei,WAN Xiaojin,YUAN Hui,et al.Research on new gas treatment technology for submerged oil electric pumps under high gas-oil ratio conditions[J].Journal of Chongqing Institute of Science and Technology (natural science edition),2015,18(3):90-93.(in Chinese)
    [14] 李京瑞,颜廷俊,张白茹.叶轮开孔对高效气液混合器性能的影响[J].石油机械,2017,45(8):76-81.LI Jingrui,YAN Tingjun,ZHANG Bairu.Effect of impeller opening on the performance of high-efficiency gas-liquid mixer [J].Petroleum machinery,2017,45(8):76-81.(in Chinese)
    [15]

    SHI Y,ZHU H,YIN B,et al.Numerical investigation of two-phase flow characteristics in multiphase pump with split vane impellers[J].Journal of mechanical science and technology,2019,33(4):1651-1661.

    [16]

    WANG B,ZHANG H,DENG F,et al.Effect of short blade circumferential position arrangement on gas-liquid two-phase flow performance of centrifugal pump[J].Processes,2020,8(10):1317.

    [17] 张金亚,朱宏武,徐丙贵,等.高含气率下增强叶轮内气液均匀混合的方法[J].排灌机械工程学报,2012,30(6):641-645.ZHANG Jinya,ZHU Hongwu,XU Binggui,et al.A method to enhance the uniform mixing of gas and liquid in impeller with high gas content[J].Journal of drainage and irrigation machinery engineering,2012,30(6):641-645.(in Chinese)
    [18] 谭晶晶.新型电潜泵开缝叶片设计及气液混输性能分析[D].大庆:东北石油大学,2019.
    [19] 张开辉.气液混输泵导流腔改型及内部两相流动特性数值研究[D].西安:西安理工大学,2019.
    [20]

    ZHU J,ZHANG H Q.Numerical study on electrical-submersible-pump two-phase performance and bubble-size modeling[J].SPE production & operations,2017,32(3):267-278.

    [21]

    SPEZIALE C,ABID R,ANDERSON E.Critical evaluation of two-equation models for near-wall turbulence[J].AIAA journal,1992,30(2):324-331.

    [22]

    SHI Y,ZHU H.Proposal of a stage-by-stage design method and its application on a multi-stage multiphase pump based on numerical simulations[J].Advances in mechanical engineering,2021,13(1):16878140209-87317.

    [23] 于群,章宇,王阳,等.大流量工况下离心泵非定常空化流动特性分析[J].机电工程,2022,39(7):935-941.YU Qun,ZHANG Yu,WANG Yang,et al.Analysis on unsteady cavitation flow characteristics of centrifugal pump at large flow rate[J].Journal of mechanical & electrical engineering,2022,39(7):935-941.(in Chinese)
    [24]

    LI Y,YU Z,SUN W.Drag coefficient modification for turbulent gas-liquid two-phase flow in a rotodynamic pump[J].Chemical engineering journal,2021,417:128570.

    [25]

    WANG B,ZHANG H,DENG F,et al.Effect of shortblade circumferential position arrangement on gas-liquid two-phase flow performance of centrifugal pump[J].Processes,2020,8(10):1317.

    [26] 周岭,王万宏,李跃民,等.端面间隙对深井泵性能和内部流场的影响[J].水泵技术,2020(3):1-5.ZHOU Ling,WANG Wanhong,LI Yuemin,et al.Effect of end gap on the performance and internal flow field of deep well pumps[J].Water pump technology,2020(3):1-5.(in Chinese)
  • 期刊类型引用(1)

    1. 李会强,孟利民,袁荫武. 新型双排盘配流式径向柱塞泵设计及流场分析. 机电工程. 2025(03): 539-548 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-12-20
  • 刊出日期:  2024-06-27

目录

    /

    返回文章
    返回