高级检索+

基于修正PANS模型的轴流泵空化特性数值模拟

俞芸芸, 周大庆, 于安, 刘佳佳

俞芸芸, 周大庆, 于安, 刘佳佳. 基于修正PANS模型的轴流泵空化特性数值模拟[J]. 排灌机械工程学报, 2022, 40(12): 1204-1211.
引用本文: 俞芸芸, 周大庆, 于安, 刘佳佳. 基于修正PANS模型的轴流泵空化特性数值模拟[J]. 排灌机械工程学报, 2022, 40(12): 1204-1211.
YU Yun-yun, ZHOU Da-qing, YU An, LIU Jia-jia. Cavitation characteristics of axial-flow pump based on modified partially-averaged Navier-Stokes model[J]. Journal of Drainage and Irrigation Machinery Engineering, 2022, 40(12): 1204-1211.
Citation: YU Yun-yun, ZHOU Da-qing, YU An, LIU Jia-jia. Cavitation characteristics of axial-flow pump based on modified partially-averaged Navier-Stokes model[J]. Journal of Drainage and Irrigation Machinery Engineering, 2022, 40(12): 1204-1211.

基于修正PANS模型的轴流泵空化特性数值模拟

基金项目: 

国家自然科学基金资助项目(51979086,51839008)

详细信息
    作者简介:

    俞芸芸(1992—),女,江苏南京人,讲师(yuyunyunhhu@163.com),主要从事流体机械特性及数值模拟研究.周大庆(1976—),男,浙江泰顺人,教授,博士生导师(zhoudaqing@hhu.edu.cn),主要从事流体机械特性及工程研究

    通讯作者:

    俞芸芸(1992—),女,江苏南京人,讲师(yuyunyunhhu@163.com),主要从事流体机械特性及数值模拟研究.周大庆(1976—),男,浙江泰顺人,教授,博士生导师(zhoudaqing@hhu.edu.cn),主要从事流体机械特性及工程研究

    俞芸芸(1992—),女,江苏南京人,讲师(yuyunyunhhu@163.com),主要从事流体机械特性及数值模拟研究.周大庆(1976—),男,浙江泰顺人,教授,博士生导师(zhoudaqing@hhu.edu.cn),主要从事流体机械特性及工程研究

  • 中图分类号: TH312

Cavitation characteristics of axial-flow pump based on modified partially-averaged Navier-Stokes model

  • 摘要: 为了研究轴流泵空化问题,利用CFX软件二次开发技术对湍流模型进行了修正,通过编写CCL语言实现了PANS模型中参数fk的动态定义,使其可以瞬时地根据当地网格条件和湍流长度尺度修改其值;利用修正后的湍流模型对轴流泵全流道进行空化数值计算,得出临界汽蚀余量为5.37 m,经试验可知,实际临界汽蚀余量为5.68 m,两者误差是由试验条件及试验系统引起的,且在合理范围内,并通过拍摄空泡图验证了该湍流模型在轴流泵空化计算中的可靠性.分析数值计算结果,得出了不同工况下轴流泵的空化特性,随着汽蚀余量的减小,轴流泵叶轮内空泡体积分数变大,涡量变大,叶片表面压力和流速在空泡产生和溃灭的位置处发生相应波动;随着流量的增大,轴流泵临界汽蚀余量减小,空泡分布的整体量变大,叶轮内部湍动能值变大,湍流耗散变严重,这与空化的发生和溃灭有直接关系.
    Abstract: In order to study the cavitation problem of axial-flow pumps, the secondary development technology of CFX software was used to modify the turbulence model, and realize the dynamic definition of the parameter fk in the PANS model by writing CCL language, so that it can be defined according to local grid conditions and turbulence lengths. The revised turbulence model was used to numerically calculate the cavitation in the entire flow channel of the axial-flow pump. According to the calculation results, the critical NPSH of the axial-flow pump is 5.37 m, while the test shows that the actual critical NPSH is 5.68 m. The error between the two values is caused by the test conditions and the test system, and is within a reasonable range. The reliability of the turbulence model in the cavitation calculation of the axial-flow pump was also verified by taking the cavitation diagram in the test. By analyzing the numerical calculation results, the cavitation characteristics of the axial-flow pump under different working conditions were obtained. As the decrease of NPSH, the volume fraction of cavitation in the impeller of the axial-flow pump increases, the vorticity increases, and the surface pressure and flow velocity of the blade fluctuate correspondingly at the position where the cavitation occurs and collapses. With the increase of flow rate, the critical NPSH of axial-flow pump decreases, the overall amount of cavitation distribution becomes larger, the value of turbulent kinetic energy inside the impeller becomes larger, and the turbulent flow dissipation becomes serious, which is directly related to the occurrence and collapse of cavitation.
  • [1] 段向阳,王永生,苏永生,等.离心泵空化监测试验[J].振动、测试与诊断,2011,31(3):385-401.DUAN Xiangyang,WANG Yongsheng,SU Yongsheng,et al.Experimental study of cavitation monitoring in centri-fugal pump[J].Journal of vibration,measurement & diagnosis,2011,31(3):385-401.(in Chinese)
    [2] 段五华,王澄谦,郑强.离心萃取器混合区内三相流的 CFD-PBM 模拟[J].流体机械,2021,49(11):25-32.DUAN Wuhua,WANG Chengqian,ZHENG Qiang.CFD-PBM simulation of three-phase flow in the mixing zone of a centrifugal contactor[J].Fluid machinery,2021,49(11):25-32.(in Chinese)
    [3] 刘本庆,杨魏,郭双辉,等.基于不同基底的PANS模型的旋转槽道流研究[J].工程热物理学报,2020,41(4):871-876.LIU Benqing,YANG Wei,GUO Shuanghui.Study on rotating channel flow based on different PANS model[J].Journal of engineering thermophysics,2020,41(4):871-876.(in Chinese)
    [4]

    LIU Houlin,WANG Jian,WANG Yong,et al.Partially-averaged Navier-Stokes model for predicting cavitating flow in centrifugal pump[J].Engineering applications of computational fluid mechanics,2014,8(2):319-329.

    [5]

    GIRIMAJI S S,ABDOL-HAMID K S.Partially-averaged Navier-Stokes model for turbulence:Implementation and validation[C]//Proceedings of 43rd AIAA Aerospace Sciences Meeting and Exhibit,2005:502.

    [6]

    LAKSHMIPATHY S,GIRIMAJI S S.Partially averaged Navier-Stokes(PANS) method for turbulence simulations:flow past a circular cylinder[J].Journal of fluids engineering,2010,132 :121202.

    [7] 罗大海,阎超,王小永.部分平均Navier-Stokes方法模拟超声速斜面空腔流动[J].航空动力学报,2015,30(9):2167-2173.LUO Dahai,YAN Chao,WANG Xiaoyong.Partially averaged Navier-Stokes method for simulation of supersonic flow over a ramped-cavity[J].Journal of aerospace power,2015,30(9):2167-2173.(in Chinese)
    [8] 黄彪,王国玉,权晓波,等.PANS模型在空化湍流数值计算中的应用[J].应用力学学报,2011,28(4):339-343.HUANG Biao,WANG Guoyu,QUAN Xiaobo,et al.Application of the partially-averaged Navier-Stokes method in computations of turbulent cavitating flows[J].Chinese journal of applied mechanics,2011,28(4):339-343.(in Chinese)
    [9] 施卫东,张光建,张德胜.基于PANS模型的水翼非定常空化特性研究[J].华中科技大学学报(自然科学版),2014,42(4):1-5.SHI Weidong,ZHANG Guangjian,ZHANG Desheng.Investigation of unsteady cavitation around hydrofoil based on PANS model[J].Journal of Huazhong University of Science and Technology(natural science edition),2014,42(4):1-5.(in Chinese)
    [10] 石磊,张德胜,陈健,等.基于PANS模型的轴流泵叶顶空化特性[J].排灌机械工程学报,2016,34(7):584-590.SHI Lei,ZHANG Desheng,CHEN Jian,et al.Characte-ristics of tip cavitation in an axial-flow pump based on PANS model[J].Journal of drainage and irrigation machinery engineering,2016,34(7):584-590.(in Chinese)
    [11]

    HUANG R,LUO X,JI B,et al.Turbulent flows over a backward facing step simulated using a modified partially-averaged Navier-Stokes model[J].Journal of fluids engineering,2017,139(4):1-7.

    [12]

    JI Bin,LUO Xianwu,ROGER E A A,et al.Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil[J].International journal of multiphase flow,2015,68:121-134.

    [13]

    LUO Xianwu,HUANG Renfang,JI Bin.Transient cavitating vortical flows around a hydrofoil using k-ω partially averaged Navier-Stokes model[J].Modern physics letters B,2016(30):1-10.

    [14]

    LIU Jintao,GUO Pengcheng,CHEN Tiejun,et al.The influence of nonlinear shear stress on partially averaged Navier-Stokes (PANS) method [J].Journal of hydrodynamics,2017,29(3):479-484.

    [15] 王圣业,符翔,杨小亮,等.高阶矩湍流模型研究进展及挑战[J].力学进展,2021,51(1):29-61.WANG Shengye,FU Xiang,YANG Xiaoliang,et al.Progresses and challenges of high-order-moment turbulence closure[J].Advances in mechanics,2021,51(1):29-61.(in Chinese)
    [16]

    ADRIAN J L,GUSTAVO C B,PABLO M C.A note on the numerical treatment of the k-epsilon turbulence model[J].International journal of computational fluid dynamics,2001,14(3):1-11.

    [17]

    LAUNDER B E.First steps in modelling turbulence and its origins:a commentary on Reynolds (1895) ′On the dynamical theory of incompressible viscous fluids and the determination of the criterion′[J].Philosophical transactions of the royal society a mathematical physical and engineering sciences,2014,373:1-12.

    [18]

    DAVIDSON L.The PANS k-epsilon model in a zonal hybrid RANS-LES formulation[J].International journal of heat & fluid flow,2014,46(4):112-126.

    [19]

    CHANGLI H U,WANG G Y,CHEN G H,et al.A modified PANS model for computations of unsteady turbulence cavitating flows[J].Science China,2014,57(10):1967-1976.

    [20] 杜若凡,阎超,罗大海.PANS方法在双圆柱绕流数值模拟中的性能分析[J].北京航空航天大学学报,2015,41(8):1374-1380.DU Ruofan,YAN Chao,LUO Dahai.Property assess-ment of PANS method for numerical simulation of flow around tandem cylinders[J].Journal of Beijing University of Aeronautics and Astronautics,2015,41(8):1374-1380.(in Chinese)
    [21] 于冲,王旭,董福安,等.y+值对翼型气动参数计算精度的影响研究[J].空军工程大学学报(自然科学版),2012,13(3):25-29.YU Chong,WANG Xu,DONG Fu′an,et al.The Study of effect of y+ on precision of pneumatic parameters of foil[J].Journal of Air Force Engineering University (natural science edition),2012,13(3):25-29.(in Chinese)
    [22] 周领,吴金远,王丰,等.抽水蓄能电站水力瞬变的有限体积法建模模拟[J].哈尔滨工业大学学报,2022,54(6):79-86.ZHOU Ling,WU Jinyuan,WANG Feng,et al.Numeri-cal simulation of hydraulic transients in pumped storage power station with finite volume method[J].Journal of Harbin Institute of Technology,2022,54(6):79-86.(in Chinese)
    [23] 王勇.离心泵空化及其诱导振动噪声研究[D].镇江:江苏大学,2011.
    [24] 关醒凡.现代泵技术设计手册[M].北京:宇航出版社,1995.
    [25] 洪锋,高振军,袁建平.基于Rayleigh-Plesset方程的空化模型改进与应用[J].农业机械学报,2018,49(2):126-132.HONG Feng,GAO Zhenjun,YUAN Jianping.Improved Cavitation Model based on Rayleigh-Plesset equation and its application[J].Transactions of the CSAM,2018,49(2):126-132.(in Chinese)
  • 期刊类型引用(5)

    1. 范云逸,周鹏,陈岗,戴毓帝,于鑫. 基于能量损失模型的轴流泵空化特性研究. 江苏水利. 2024(08): 26-30 . 百度学术
    2. 董志勇,李丹,徐瀚冉,黄桢蕾. 泥沙性质对高速水流消失空化数的影响. 浙江工业大学学报. 2024(05): 473-478 . 百度学术
    3. 孙永瑞,曾鸣,黄世凯,张本权,陶琛. 基于1/(ZT_1)修正的五级丙烯压缩机带压启动过程建模研究及分析. 流体机械. 2024(11): 2-9 . 百度学术
    4. 帅泽豪,王凯,罗光钊,王玥,刘厚林,张岭. 叶根圆弧对航空燃油离心泵空化性能的影响. 流体机械. 2023(07): 60-67 . 百度学术
    5. 张翔,赖喜德,陈小明,刘升波. 基于PB-NSGA-Ⅲ算法的高速离心泵叶轮性能优化研究. 机电工程. 2023(12): 1948-1956 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 11
出版历程
  • 收稿日期:  2022-07-08
  • 刊出日期:  2022-12-27

目录

    /

    返回文章
    返回