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Numerical simulation on water hammer in pressurized
pipeline based on MIAB model
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(1. Navy Submarine Academic Qingdao Shandong 266042 China; 2. Institute of Fluid Machinery and Engineering Department of
Energy and Power Engineering Tsinghua University Beijing 100084 China)

Abstract: In order to improve the predictive accuracy of 1D water hammer model for transient flow in
pressurized pipelines an additional transient friction term was introduced into the traditional 1D steady
friction model and an improved unsteady friction model was developed. Using these two models the
pressure transient characteristics of a reservoir—pipeline—valve system were numerically simulated for
three different steady-state initial flow velocity conditions. The predictive accuracy of the two models
was compared. The results indicate that both the steady friction model and the improved unsteady fric—
tion model closely approximate the pressure variations in the first period of the pressure wave in ac—
cordance with experimental values. However after the first pressure wave period the errors in predic—

ting pressure peak values for low initial velocity conditions are 10.3% and 4.7% for the steady and un—
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steady friction models respectively. The improved unsteady friction model shows significantly enhanced
predictive accuracy. Research into pressure wave propagation characteristics reveals distinct differences
in wave propagation and reflection behavior at different locations in the system. During one water
hammer period pressure waves experience complete negative reflection at the reservoir due to pressure
difference effects while at the valve the waves only change direction due to negligible velocity change
in the microHluid section. These findings contribute valuable insights into the safe and stable operation
as well as optimization design of pressurized pipelines.

Key words: pressurized pipeline; transient flow; unsteady friction; quick valve closure;

negative reflection
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1 UF
Tab.1 Initial flow parameters of test conditions 1
vo/(m =57 fe Ho /m Casel 1D-SF 1D-UF
Casel 0.228 4 540 46.14 1 1D-SF
Case2 0.306 6 089 45.36
Case3 0.384 7 638 44.66 1
1ID-UF
2 1D-SF 1D-UF 0.220 s
10.3% 4.7%
21 1D
Casel PT 2
ase 1 Case2
2 ’ Case3 .
4 5 Case2  Case3
Case2  Case3
Casel
.1D-SF
Case2  Case3
1D-UF 1D-
UF
2 Casel PT,
Fig.2 PT, pressure variations over time under Casel
working condition
2 1
1D-SF ID-UF
2
0~0.050 s
3 1 2
4 Case2 PT,
Fig.4 PT, pressure variations over time under Case2
working condition
3 Casel PT, (0~0.050 s)

Fig.3 PT, pressure variations over time under Casel

5 Case3 PT,
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working condition( K Fig.5 PT, pressure variations over time under Case3
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