Design of Bionic Perching Robotic Arm for Rotor Drone
-
Graphical Abstract
-
Abstract
To meet the requirements of fixed-point monitoring and reconnaissance tasks within forest areas by rotary-wing drones, a bionic perching robotic arm is designed through the study of birds’ perching processes and the bionic research of legs and feet. The modular design and kinematics snalysis of the whole machine are carried out. The leg module employs Automatic Dynamic Analysis of Mechanical Systems(ADAMS) for kinematic trajectory simulation, while the claw module uses the D-H(Denavit-Hartenberg) parameter method to obtain the kinematic equation of the toetip. The workspace point cloud distribution of the claw module’s toetip is derived through MATLAB simulation. A prototype is fabricated to establish an experimental system, which is then used to verify the activity range of the toe part and the overall perching capability of the machine. This design is simple and easy to control, capable of completing perching behavior in the laboratory stage.
-
-