Abstract:
Biomass had negative carbon properties and met the requirements of green development as a typical renewable energy. Under relatively mild conditions, hydrothermal carbonization was the process of converting biomass into various functional carbon materials. This paper discussed recent advances of biomass-based porous carbon materials by the hydrothermal transformation from biomass, such as monosaccharides(glucose, fructose, and xylose), lignocellulosic fibers(cellulose, hemicellulose, and lignin) and chitosan. The effects of temperature, reaction time and raw material concentration on its structure and properties were mainly discussed, as well as its applications in gas adsorption, dye adsorption and heavy metal ion adsorption. The authors proposed future research directions for the hydrothermal synthesis of high performance and environmentally friendly porous carbon materials from biomass.