高级检索+

凸台类型对离散型流道叠片过滤器水头损失的影响

Effects of convex type on head loss of disc filter with discrete flow channels

  • 摘要: 离散型流道叠片过滤器是一种水头损失相对较小的新型叠片过滤器,其叠片表面均匀分布的凸台结构是影响叠片过滤器水头损失的主要因素之一。为探明凸台类型对内部流场的影响并进一步降低离散型流道叠片过滤器的水头损失,通过物理试验与数值仿真,对比分析了初始的右三角形和优化新增的菱形、椭圆形、上三角形、下三角形等共5种凸台类型的离散型流道叠片过滤器的水头损失及流场分布特征。结果表明:将离散型流道叠片过滤器凸台类型设置为下三角形有利于减小水流主流区与凸台边壁的接触长度和凸台间湍动能强度,降低离散型流道叠片过滤器的水头损失;与初始右三角形凸台相比,4种优化的凸台与主流区接触长度的降幅为9.61%~36.73%,最大湍动能的降幅为25.87%~49.96%,其中下三角形凸台降幅分别为29.99%和49.96%;根据模拟计算可得右三角形凸台流道间水头损失系数最大,下三角形凸台流道间水头损失系数最小,其能量转换效率最高;清水条件下,下三角形凸台离散型流道叠片过滤器水头损失相比初始离散型流道叠片过滤器降低了14.89%~21.93%。研究结果可为离散型流道叠片过滤器的结构优化提供参考。

     

    Abstract: The disc filter with discrete flow channels is a novel device that produces a relatively small water head loss. The regular distribution of the convex structures on the disc surface is one of the main factors affecting head loss of the disc filter. In order to find out the influence of different types of the convex structure on the internal flow field and further reduce the head loss of the disc filter, a physical experiment and numerical simulation were conducted to analyze the head loss and flow field distribution characteristics of five different convex structures, including the original right triangle, rhombus, oval, upper triangle and lower triangle. The results show that the lower triangle is conducive to reducing the contact length between the convex structure and the main flow zone and the turbulence kinetic energy intensity, as well as the head loss of the disc filter with discreet flow channels. Compared with the original right triangle, the contact length and maximum turbulence kinetic energy of the four optimized convex structures decreased by 9.61%-36.73% and 25.87%-49.96%, respectively, among which, those of the lower triangle decreased by 29.99% and 49.96%. According to the simulation, the head loss coefficient of the right triangle was the largest, and that of the lower triangle was the smallest, which also had the highest energy conversion efficiency. Under clear water condition, the head loss of the disc filter with lower triangle structure decreased by 14.89%-21.93% compared with the original structure. The research findings can provide some reference for the structural optimization of disc filters with discrete flow channels.

     

/

返回文章
返回