高级检索+

基于大涡模型的床面形态与水流相互作用过程模拟研究

刘汛, 宗全利, 刘贞姬, 苏军

刘汛, 宗全利, 刘贞姬, 苏军. 基于大涡模型的床面形态与水流相互作用过程模拟研究[J]. 水资源与水工程学报, 2024, 35(2): 149-158.
引用本文: 刘汛, 宗全利, 刘贞姬, 苏军. 基于大涡模型的床面形态与水流相互作用过程模拟研究[J]. 水资源与水工程学报, 2024, 35(2): 149-158.
LIU Xun, ZONG Quan-li, LIU Zhen-ji, SU Jun. Simulation on the interactions between bed morphology and water flow based on the large eddy model[J]. Journal of Water Resources and Water Engineering, 2024, 35(2): 149-158.
Citation: LIU Xun, ZONG Quan-li, LIU Zhen-ji, SU Jun. Simulation on the interactions between bed morphology and water flow based on the large eddy model[J]. Journal of Water Resources and Water Engineering, 2024, 35(2): 149-158.

基于大涡模型的床面形态与水流相互作用过程模拟研究

基金项目: 

国家自然科学基金项目(12162030)

山东省自然科学基金项目(ZR2021ME167)

详细信息
    作者简介:

    刘汛(1996—),男,宁夏银川人,硕士研究生,主要从事河流动力学方面研究

    通讯作者:

    宗全利(1979—),男,山东临朐人,博士,教授,博士生导师,主要从事河流动力学方面研究

  • 中图分类号: TV147

Simulation on the interactions between bed morphology and water flow based on the large eddy model

  • 摘要: 为判断动床弯道中二次流和涡结构模型的模拟精度,基于Barbhuiya的90°水平弯道冲刷水槽试验,比较了大涡模型(LES)和RNG k-ε模型对弯道冲淤过程中床面形态模拟的精确程度,发现LES模型结果更加精确。基于LES模型模拟结果,通过使用Q准则识别二次流产生的底部涡结构,分析了涡结构对床面冲刷淤积的定量影响。结果表明:在清水冲刷动床弯道的过程中,Q值介于30~50之间时底部涡趋于稳定存在,Q值大于50时会明显影响床面冲淤;强大稳定的涡结构会使床面形态逐渐稳定,床面冲刷和淤积速率趋于一个定值,床面冲刷和淤积速率不超过2×10-6m/s。进一步分析弯道内剪切流速与床面形态的关系,发现弯道内存在两类高剪切流速区域,当第一类区域剪切流速值大于第二类时,床面会出现深度大于0.10 m的明显冲刷坑。研究结果可为弯道中冲淤平衡和床面形态模拟提供参考。
    Abstract: To investigate the model simulation accuracy of secondary flow and eddy structure in dynamic bed bends, the simulation accuracy of bed morphology during scouring and siltation process in bends by the large eddy model(LES) and the RNG k-ε model was verified by the scour flume experiments of a 90° horizontal bend by Barbhuiya, and the results of the LES model were found to be more accurate. Based on the simulation results of the LES model, the bottom vortex structure generated by secondary flow was identified by the Q criterion, according to which the quantitative effect of vortex structure on bed scouring and siltation was analyzed. The results show that in the process of clear water scouring the dynamic bed bend, the bottom vortex tends to be stable when the Q value is between 30-50, and becomes strong enough to affect the bed scouring and siltation when Q>50, because a strong and stable vortex structure can stabilize the bed morphology, leading to a constant bed scouring and siltation rate, which changes within 2×10-6 m/s. According to the analysis of the relationship between the shear flow velocity in the bend and the bed morphology, there are two types of high shear flow velocity areas in the bend, when the shear velocity value of the first type area is larger than that of the second type, obvious scouring pits with a depth greater than 0.10 m will appear on the bed surface. The results of this study can be used as a reference for the simulation of siltation equilibrium and bed morphology in the bends.
  • [1]

    BARBHUIYA A K,TALUKDAR S.Scour and three dimensional turbulent flow fields measured by ADV at a 90° horizontal forced bend in a rectangular channel[J].Flow Measurement and Instrumentation,2010,21(3):312-321.

    [2] 隋斌.明渠弯道交汇水流水力特性的大涡模拟与实验研究[D].武汉:武汉大学,2017.
    [3] 王奇,单钰淇,刘超,等.不同水沙条件下弯道河床冲淤与漫滩洪水特性研究[J].工程科学与技术,2022,54(5):158-167.
    [4] 潘云文,刘欣,杨克君.侵蚀基准面下降对弯道河床演变的影响[J].长江科学院院报,2023,40(3):11-17.
    [5] 曹玉芬,白玉川,高术仙.连续弯道水槽水流结构与床面形态试验研究[J].天津大学学报(自然科学与工程技术版),2020,53(12):1226-1235.
    [6] 马淼.弯道水流结构及几何形态对水流特性影响的研究[D].西安:西安理工大学,2017.
    [7]

    YAN Xiaohui,RENNIE C D,MOHAMMADIAN A.A three-dimensional numerical study of flow characteristics in strongly curved channel bends with different side slopes[J].Environmental Fluid Mechanics,2020,25:e21.

    [8]

    ALMEIDA J R M,OTA J J.Comparative study between turbulence models in curved channels[J].RBRH,2020,12(2):258.

    [9]

    SHAHEED R,MOHAMMADIAN A,GILDEH H K.A comparison of standard k-ε and realizable k-ε turbulence models in curved and confluent channels[J].Environmental Fluid Mechanics,2019,19(2):543-568.

    [10] 侯慧敏,邓凯文,杨紫海.基于湍流模型数值模拟的梯形弯道水流特性研究[J].水电能源科学,2022,40(1):124-127.
    [11] 罗平安,李觅.连续微弯弯道水力特性试验及模拟研究[J].长江科学院院报,2019,36(1):55-59.
    [12]

    SHAHOSAINY M,TABATABAI M R M,NADOUSHANI S M.Effect of secondary flow on hydraulic geometry in meandering rivers[J].Iranian Journal of Science and Technology,Transactions of Civil Engineering,2019,43(S1):357-369.

    [13] 田守霞.无坝渠首侧向引水的三维水力特性研究[D].天津:天津大学,2010.
    [14] 李安斌,张根广,CHANDARA M,等.输沙率公式对桥墩局部冲刷数值模拟影响研究[J].泥沙研究,2022,47(3):15-22.
    [15]

    MEYER-PETER E,MULLER R.Formulas for bed-load transport[D].Delft:Delft University of Technology,1948.

    [16]

    FINOTELLO A,D’ALPAOS A,LAZARUS E D et al.High curvatures drive river meandering[J].Geology,2019,47(10):E485.

    [17]

    SYLVESTER Z,DURKIN P,COVAULT J A.High curvatures drive river meandering[J].Geology,2019,47(10):e485.

    [18]

    RUSSELL P,VENNELL R.High resolution observations of an outer-bank cell of secondary circulation in a natural river bend[J].Journal of Hydraulic Engineering,2019,145(5):04019012.

    [19] 景思雨,杨文俊,陈越.光滑矩形明渠二次流特性研究[J].水力发电学报,2020,39(1):12-20.
    [20]

    LIU Chaoqun,GAO Yisheng,TIAN Shuling et al.Rortex:a new vortex vector definition and vorticity tensor and vector decompositions[J].Physics of Fluids,2018,30(3):035103.

    [21] 郭文思,李乃稳,刘超,等.LES和k-ε湍流模型对斜向淹没射流的数值模拟研究[J].水力发电学报,2017,36(1):7-15.
    [22]

    KASHYAP S,CONSTANTINESCU G,et al.Influence of channel aspect ratio and curvature on flow,secondary circulation,and bed shear stress in a rectangular channel bend[J].Journal of Hydraulic Engineering,2012,138(12):1045-1059.

    [23] 曹玉芬,高术仙,白玉川.正弦派生曲线弯道水流结构特征试验研究[J].水力发电学报,2020,39(4):21-32.
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-16
  • 刊出日期:  2024-04-27

目录

    /

    返回文章
    返回