高级检索+

空间插值在测氡探测隐蔽火源中的应用比较

Comparison of Spatial Interpolations Applied to Radon Measurement for Hidden Fire Location

  • 摘要: 为了选择适用于局部观测尺度下测氡探测隐蔽火源的最优空间插值方法,本文以北岩煤矿火区样本数据为研究对象,基于Arc GIS地统计分析模块,通过交叉检验定量筛选出4种插值方法下误差最小的插值模型,定性比较了不同模型的空间分布特征,确定了最优插值方法并进行了钻孔验证。结果表明,4种方法中误差最小的插值模型分别为反距离权重法选择模型幂指数p=1,径向基函数法为薄板样条函数模型,泛克里金法与普通克里金法均为高斯函数模型;综合空间分布图内插、外推表面分布特征及钻孔验证结果,插值方法排序为普通克里金法(高斯函数)>泛克里金法(高斯函数)>径向基函数法(薄板样条函数)>反距离权重法(p=1),优先选择普通克里金法(高斯函数)进行插值来获取煤自燃火区地表氡分布差异信息。

     

    Abstract: In order to select the optimal spatial interpolation applied to radon measurement for hidden fire location at the local scale, it took the sample data from the fire area of Beiyan Coal Mine as the study object based on the Arc GIS geostatistic wizard, then quantitatively screened out the most accurate interpolation model among four interpolations by cross-checking, qualitatively discerned the spatial distribution characteristics of different models, and ascertained the optimal interpolation by drilling verification. The results show that the most accurate model among four interpolations: the Inverse Distance Weight selects the Power p=1 model, the Radial Basis Function uses the Thin Plate Spline model, and both the Universal Kriging and the Ordinary Kriging are a Gaussian model; with the comprehensive deliberation on the distribution characteristics both in interpolating and extrapolating surface, as well as drilling verification, the interpolations are ordered as Ordinary Kriging(Gaussian)>Universal Kriging(Gaussian)>Radial Basis Function(Thin Plate Spline)>Inverse Distance Weighting(p=1), the Ordinary Kriging(Gaussian) is preferred to obtaining surface radon distribution difference in coal spontaneous combustion fire areas.

     

/

返回文章
返回