高级检索+

基于多阶段特征选择和CNN-GRU的网络入侵检测模型

Network Intrusion Detection Model Based on Multi-Stage Feature Selection and CNN-GRU

  • 摘要: 针对网络入侵检测数据中冗余特征多导致入侵检测准确率低的问题,本文提出了一种基于多阶段特征选择和CNN-GRU的网络入侵检测模型。首先,针对数据集的特征冗余,结合皮尔逊相关系数(PCC)和随机森林(RF)构建PCC-RF特征选择算法进行多阶段特征选择,构造最优特征子集。其次,利用卷积神经网络(CNN)对空间特征的强大提取能力和门控循环单元(GRU)的优秀时序特征提取能力,构建CNNGRU模型。最后,将最优特征子集输入到CNN-GRU模型中进行训练。使用UNSW-NB15数据集进行实验,实验结果表明:数据集在经过PCC-RF特征处理算法后,维度更低,效果更佳,本文所提模型检测准确率达到84.72%。

     

    Abstract: A network intrusion detection model based on multi-stage feature selection and CNN-GRU is proposed to address the problem of low accuracy of intrusion detection due to redundant features of network intrusion detection data.Firstly,for the feature redundancy of the data set,the PCC-RF feature selection algorithm is constructed by combining Pearson correlation coefficient and random forest for multistage feature selection and constructing the optimal feature subset.Then the CNN-GRU model is constructed by using the powerful extraction capability of convolutional neural network for spatial features and the excellent temporal feature extraction capability of gated recurrent units.Finally,the optimal feature subset is input into the CNN-GRU model for training.Experiments are conducted by using the UNSWNB15 dataset,and the experimental results show that the dataset,after the PCC-RF feature processing algorithm,has lower dimensionality and better results compared with other methods.The model detection accuracy reaches 84.72%.

     

/

返回文章
返回