New Hammerstein Modeling of Hysteresis Characteristics of Giant Magnetostrictive Materials
-
摘要: 超磁致伸缩材料(Giant Magnetostrictive Material, GMM)作为一种新型功能材料,因其具有磁-机耦合系数大、响应速度快、频响特性好等优点而被广泛应用于能量采集、微位移驱动、精密定位控制等领域,但材料复杂的迟滞非线性影响了其致动器的定位精度,为了辨识超磁致伸缩材料中存在的迟滞非线性,本文提出一种新Hammerstein模型建模方法。此方法的优点在于模型可以更好地逼近迟滞非线性,提供更高的精度,减少了串联环节的参数辨识工作量。首先,构建一个基于双曲函数的迟滞算子扩展空间的极限学习机模型,用其表示新Hammerstein模型中的静态非线性部分。其次,提取极限学习机模型的全连接层的权重和偏置参数用于构建新模型中的动态线性部分的状态空间方程,减少了传统模型中串联环节的模型参数辨识的工作。最后,建立了可以描述超磁致伸缩材料迟滞特性的新Hammerstein模型。新Hammerstein模型的建模相对误差为0.86%~3.69%,平均绝对误差为2.63%,比传统Hammerstein模型均方根误差低0.8μm左右,平均绝对误差提高将近4%。仿真结果证明了新Hammerstein模型对超磁致伸缩材料复杂迟滞特性建模的有效性。
-
关键词:
- 超磁致伸缩材料 /
- 迟滞特性 /
- 极限学习机 /
- 迟滞算子 /
- Hammerstein模型
Abstract: Giant magnetostrictive material(GMM), as a new type of functional material, was widely used in energy harvesting, micro displacement driving, precision positioning control and other fields due to its advantages of large magneto mechanical coupling coefficient, fast response speed, and good frequency response characteristics. However, the complex hysteresis nonlinearity of the material affected the positioning accuracy of its actuator. In order to identify the hysteresis nonlinearity in GMM materials, this paper proposed a new Hammerstein model modeling method. The advantage of this method was that the model could better approximate hysteresis nonlinearity, provide higher accuracy, and reduce the workload of parameter identification in the series link. Firstly, an extreme learning machine model was constructed based on hyperbolic functions to represent the static nonlinear part of the new Hammerstein model in the extended space of hysteresis operators. Secondly, the extracted weights and bias parameters of the fully connected layers of the extreme learning machine model was used to construct the state space equation of the dynamic linear part in the new model, which reduced the workload of identifying model parameters in the traditional model with serial links.Finally, a new Hammerstein model was established to describe the hysteresis characteristics of giant magnetostrictive materials. The modeling relative error percentage of the new Hammerstein model is 0. 86% to 3. 69%, and the average absolute error percentage is 2. 63%, which is about 0. 8 μm lower than the root mean square error of the traditional Hammerstein model, and the average absolute percentage error increases 4%.The simulation results demonstrate the effectiveness of the new Hammerstein model in modeling the complex hysteresis characteristics of giant magnetostrictive materials. -
-
[1] 贺兴辉,王子维,陈冰倩.压电陶瓷材料的应用与发展分析[J].居业,2018, 10(5):1.HE Xinghui, WANG Ziwei, CHEN Bingqian. Analysis of the application and development of piezoelectric ceramic materials[J]. Create Living, 2018, 10(5):1.(in Chinese) [2] 成玫,邱冶,刘旭辉,等.超磁致伸缩驱动器及其微位移特性研究[J].机床与液压,2020, 48(8):78-80.CHENG Mei, QIU Ye, LIU Xuhui, et al. Research on giant magnetostrictive drive and its micro displacement characteristics[J]. Machine Tool&Hydraulics,2020, 48(8):78-80.(in Chinese) [3] KIM B, WASHINGTON G N, YOON H S.Hysteresis-reduced dynamic displacement control of piezoceramic stack actuators using model predictive sliding mode control[J]. Smart Materials and Structures, 2012, 21(5):055018.
[4] 潘雨.超磁致伸缩驱动器的建模[D].泉州:华侨大学,2020. [5] 刘玠,安坤,王亚锋,等.基于神经网络的Preisach磁滞模型的建模[J].组合机床与自动化加工技术,2022(3):5-8.LIU Jie, AN Kun, WANG Yafeng, et al. Modeling of preisach hysteresis model based on neural networks[J]. Modular Machine Tool&Automatic Manufacturing Technique, 2022(3):5-8.(in Chinese) [6] 潘明健,安坤,李健宏,等.基于CMAC神经网络的超磁致伸缩非线性控制[J].电子测量技术,2023, 46(9):182-188.PAN Mingjian, AN Kun, LI Jianhong, et al. Nonlinear control of giant magnetostriction based on CMAC neural network[J]. Electronic Measurement Technology, 2023, 46(9):182-188.(in Chinese) [7] Mielke A. Generalized Prandtl-Ishlinskii operators arising from homogenization and dimension reduction[J].Physica B:Condensed Matter, 2012, 407(9):1330-1335.
[8] ZHU W, RUI X T. Hysteresis modeling and displacement control of piezoelectric actuators with the frequency-dependent behavior using a generalized Bouc-Wen model[J]. Precision Engineering, 2016,43:299-307.
[9] JI J A, ZHAO Z G, ZHANG S, et al. Hysteresis Characteristics prediction method of nanocrystalline materials under high-frequency excitation based on Maxwell’s equation and R-L fractional derivative[J/OL]. Proceedings of the CSEE,(2023-08-07)[2024-01-08]https://doi. org/10. 13334/j. 0258-8013. pcsee.230524.
[10] 贾立,李训龙. Hammerstein模型辨识的回顾及展望[J].控制理论与应用,2014, 31(1):1-10.JIA Li, LI Xunlong. Review and outlook on hammerstein model identification[J]. Control Theory&Applications, 2014, 31(1):1-10.(in Chinese) [11] 范家华,马磊,周攀,等.基于径向基神经网络的压电作动器建模与控制[J].控制理论与应用,2016, 33(7):856-862.FAN Jiahua, MA Lei, ZHOU Pan, et al. Modeling and control of piezoelectric actuators based on radial basis function neural network[J]. Control Theory&Applications, 2016, 33(7):856-862.(in Chinese) [12] NA J, CHEN Q, REN X. Adaptive identification and control of uncertain systems with non-smooth dynamics[M]. Pittsburgh:Academic Press, 2018.
[13] 贾高欣,王贞艳.压电陶瓷作动器的率相关迟滞建模与内模控制[J].压电与声光,2019, 41(1):130-134.JIA Gaoxin, WANG Zhenyan. Rate dependent hysteresis modeling and internal model control of piezoelectric ceramic actuators[J]. Piezoelectrics&Acoustooptics, 2019, 41(1):130-134.(in Chinese) [14] 宋伟,韩佳虎,李峰,等.有色噪声干扰下Hammerstein非线性模型辨识[J].陕西科技大学学报,2023,41(5):189-194.SONG Wei, HAN Jiahu, LI Feng, et al. Identification of Hammerstein nonlinear model under colored noise interference[J]. Journal of Shaanxi University of Science and Technology, 2023, 41(5):189-194.(in Chinese) [15] HE H R, NA J, WU J D, et al. Fixed-time adaptive parameter estimation for hammerstein systems subject to dead-zone[J]. IEEE Transactions on Industrial Electronics, 2023, 71(4):3862-3872.
[16] PAPADIMITRIOU C, VARELMANN T,SCHRÖDER C, et al. Globally optimal scheduling of an electrochemical process via data-driven dynamic modeling and wavelet-based adaptive grid refinement[J]. Optimization and Engineering, 2023:1-39.
[17] LÜL, SUN W, PAN J. Two-stage and three-stage recursive gradient identification of Hammerstein nonlinear systems based on the key term separation[J]. International Journal of Robust and Nonlinear Control,2024, 34(2):829-848.
[18] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine:Theory and applications[J]. Neurocomputing, 2006, 70(1/2/3):489-501.
[19] 王彦,朱伟,汪俊亮,等.基于ELM算法的柔性FBG形状重构末端分析[J].仪器仪表学报,2023, 44(5):81-89.WANG Yan, ZHU Wei, WANG Junliang, et al. End analysis of flexible FBG shape reconstruction based on ELM algorithm[J]. Chinese Journal of Scientific Instrument, 2023, 44(5):81-89.(in Chinese)
计量
- 文章访问数: 20
- HTML全文浏览量: 0
- PDF下载量: 0