高级检索+

数据驱动的闭环控制系统剩余寿命预测方法综述

A Review of Data-Driven Remaining Useful Life Prediction Methods for Closed-Loop Control System

  • 摘要: 随着先进传感与监测技术的快速发展,数据驱动的设备剩余寿命(RUL)预测技术已成为可靠性和自动化领域的研究前沿,并在设备运维决策中得到广泛应用,提高了设备运行的安全性、可靠性与经济性。关于数据驱动的设备剩余寿命预测方法,多数文献主要聚焦于部件级剩余寿命预测技术,并没有关注闭环控制系统剩余寿命预测技术。不同于部件级的预测,利用数据驱动的方法预测闭环控制系统剩余寿命,需要考虑控制器及反馈控制机制对系统性能退化及剩余寿命预测结果的影响。本文系统综述了数据驱动的闭环控制系统剩余寿命预测及基于预测信息的延寿控制方法的发展动态,剖析了基于Poisson过程的方法、基于Gamma过程的方法、基于Wiener过程的方法和基于混合模型方法的原理、特点与局限性。同时,对于未来数据驱动的闭环控制系统剩余寿命预测及延寿控制,在健康状态表征与综合健康指标构建、多退化部件系统剩余寿命预测及基于预测信息的延寿控制理论和验证应用等方向进行了展望。

     

    Abstract: Data-driven remaining useful life(RUL) prognostics technique has been the research frontier of reliability and automation,with the rapid development of advanced sensing and monitoring technology.It has been widely applied in system maintenance decision-making,which improves system operation safety,reliability and economy.The most reviews about data-driven RUL prediction methods mainly focus on component-level RUL prediction,but do not pay attention to the RUL prediction technology for closedloop control system.The influence of controller and feedback control on system degradation and RUL prediction need to be considered when the data-driven method is explored to predict the RUL of closed-loop control system,which is different from component-level RUL prediction.Therefore,the development trend of data-driven RUL prediction methods for closed-loop control system and life extending control(LEC) methods is reviewed based on the predictive information.Meanwhile,the principles,characteristics and limitations are dissected about the methods based on Poisson process,Gamma process,Wiener process and hybrid model,respectively.Finally,the future research directions are discussed such as characterization of health status and construction of comprehensive health indicator,system RUL prediction with multi-degraded components,theory and verification application of LEC based on predictive information.

     

/

返回文章
返回