Citation: | QIN Jiahao, QIN Pinle, CHAI Rui, CHEN Zuojun, GAO Yipeng, Wang Bao. Generation of Noisy Images in Extremely Low-Light Environments[J]. Journal of North University of China(Natural Science Edition), 2024, 45(5): 608-613. |
[1] |
MCLEAN I S, WALKER G. Electronic imaging in astronomy:Detectors and instrumentation[J]. Physics Today, 1998, 51(6):66.
|
[2] |
陈钱.先进夜视成像技术发展探讨[J].红外与激光工程,2022,51(2):1-8.CHEN Qian. Discussions on the development of advanced night vision imaging technology[J]. Infrared and Laser Engineering, 2022,51(2):1-8.(in Chinese)
|
[3] |
CHEN C, CHEN Q F, XU J, et al. Learning to see in the dark[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018:3291-3300.
|
[4] |
CHEN C, CHEN Q F, DO M, et al. Seeing motion in the dark[C]//IEEE/CVF International Conference on Computer Vision(ICCV), 2019:3184-3193.
|
[5] |
DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-d transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8):2080-2095.
|
[6] |
MAGGIONI M, BORACCHI G, FOI A, et al.Video denoising, deblocking, and enhancement through separable 4-d nonlocal spatiotemporal transforms[J]. IEEE Transactions on Image Processing,2012, 21(9):3952-3966.
|
[7] |
WEI K X, FU Y, ZHENG Y Q, et al. Physics-based noise modeling for extreme low-light photography[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(11):8520-8537.
|
[8] |
MONAKHOVA K, RICHTER S R, WALLER L,et al. Dancing under the stars:video denoising in starlight[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), 2022:16220-16230.
|
[9] |
GULRAJANI I, AHMED F, ARJOVSKY M, et al.Improved training of wasserstein gans[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017:5769-5779.
|
[10] |
SAHARIA C, HO J, CHAN W, et al. Image superresolution via iterative refinement[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2022, 45(4):4713-4726.
|
[11] |
OSHER S, BURGER M, GOLDFARB D, et al. An iterative regularization method for total variation-based image restoration[J]. Multiscale Modeling&Simulation, 2005, 4(2):460-489.
|
[12] |
RUDIN L I, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physica D:Nonlinear Phenomena, 1992, 60(1/2/3/4):259-268.
|
[13] |
陈作钧,秦品乐,柴锐,等.微光场景下的时空域EMCCD视频降噪算法[J].中北大学学报(自然科学版),2023, 44(2):168-175.CHEN Zuojun, QIN Pinle, CHAI Rui, et al. Spatiotemporal domain EMCCD video noise eduction algorithm in low light scene[J]. Journal of North University of China(Natural Science Edition), 2023,44(2):168-175.(in Chinese)
|
[14] |
ZHANG K, ZUO W M, CHEN Y J, et al. Beyond a gaussian denoiser:Residual learning of deep cnn for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7):3142-3155.
|
[15] |
FOI A, TRIMECHE M, KATKOVNIK V, et al.Practical poissonian-gaussian noise modeling and fitting for single-image raw-data[J]. IEEE Transactions on Image Processing, 2008, 17(10):1737-1754.
|
[16] |
GODARD C, MATZEN K, UYTTENDAELE M.Deep burst denoising[C]//European Conference on Computer vision(ECCV), 2018:538-554.
|
[17] |
HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[J]. Advances in Neural Information Processing Systems, 2020, 33:6840-6851.
|
[18] |
HO J, SALIMANS T. Classifier-free diffusion guidance[DB/OL].(2022-07-26)[2023-12-27]. http://arxiv. org/abs/2207. 12598.
|
[19] |
BANSAL A, BORGNIA E, CHU H M, et al. Cold diffusion:Inverting arbitrary image transforms without noise[DB/OL].(2022-08-19)[2023-12-27]. http://arxiv. org/abs/2208. 09392.
|
[20] |
CHANG K C, WANG R, LIN H J, et al. Learning camera-aware noise models[C]//Computer Vision ECCV, 2020:343-358.
|
[21] |
ABDELHAMED A, BRUBAKER M A, BROWN M S. Noise flow:Noise modeling with conditional normalizing flows[C]//IEEE/CVF International Conference on Computer Vision, 2019:3165-3173.
|