高级检索+

基于遗传算法的串联明渠多参数率定方法研究

Research on Multi-parameter Calibration Method of Cascaded Open Channel Based on Genetic Algorithm

  • 摘要: 对于复杂串联明渠调水工程的多参数率定问题,传统的试算方法需要基于水动力模型进行多次试错得到最优的参数值组合,需要的计算工作量较大。此研究提出了一种基于遗传算法的串联明渠多参数率定方法,将水动力模型中的多参数率定问题转化为以待率定参数为状态量的优化问题,并通过遗传算法寻优得到最优的待率定参数值。将方法用于对南水北调中线工程中“西黑山节制闸——坟庄河节制闸”河段的三段河道糙率与3个节制闸过闸流量系数率定,结果表明本文方法可通过一次优化过程搜索得到复杂串联明渠调水工程最优的糙率与过闸流量系数组合,且采用率定后参数值进行仿真计算得到的水位与实测水位较为接近,平均偏差在2 cm以内。

     

    Abstract: For the multi-parameter calibration problem of the complex cascaded open channel water transfer project, the traditional trialand-error method needs to obtain the optimal combination of parameter values based on the hydrodynamic model, which requires a large amount of computation. Therefore, this paper proposes a multi-parameter calibration method based on a genetic algorithm, which transforms the multiparameter calibration problem in the hydrodynamic model into an optimization problem with the calibrating parameters as the state variables. Then the combination calibration of the parameters is obtained by a genetic algorithm. The method is used to determine the roughness of the three channels and the flow coefficients of the three undershot gates in the “Xiheishan gate-Fenzhuanghe gate” section in the Middle Route Project of the South-to-North Water Transfer Project. The results show that the optimal combination calibration of the parameters can be obtained by one optimization process, the water level obtained by the simulation model by using the calibrated parameter values are relatively close to the measured water levels, with the average deviation less than 2 cm.

     

/

返回文章
返回