高级检索+

基于神经网络和智能优化算法的水电机组自适应PID控制

Adaptive PID Control of Hydropower Unit Based on Neural Network and Intelligent Optimization Algorithms

  • 摘要: 水电是具有灵活调节作用的清洁能源,在维持电力系统稳定性,保证电能质量方面发挥了其他能源难以替代的作用。随着风、光等可再生能源在电网中的比例进一步增加,传统的水电机组控制策略已难以满足应对各种复杂工况的要求。尽管针对水电机组先进控制策略的理论研究已较为成熟,但应用受制于算法本身的复杂性和现实条件。为此,在传统PID控制的基础上,分别利用智能优化算法和神经网络寻找和拟合不同工况下的最优PID控制参数,设计了适应于水电机组工况变化的自适应PID控制器。仿真结果表明,相比传统的定PID控制器,设计的自适应控制器能够根据工况变化自动调节PID参数,实现了在不同工况下均能保持最优控制性能的目标。

     

    Abstract: Hydropower is a clean energy with flexible regulation. It plays an irreplaceable role in maintaining the stability of power system and ensuring power quality. With the further increase in renewable energy such as wind and solar in the power grid,the traditional hydropower unit control strategy is difficult to meet the requirements of dealing with various complex working conditions. Although the theoretical research on advanced control strategy is relatively mature,its application is limited by the complexity of algorithm and practical conditions.Therefore,based on the traditional PID control,this paper uses intelligent optimization algorithm and neural network to search optimal PID control parameters under different working conditions,and designs an adaptive PID controller suitable. The simulation results show that,compared with traditional fixed PID controller,the adaptive controller designed in this paper can automatically adjust the PID parameters and maintain the optimal control performance under different working conditions.

     

/

返回文章
返回