高级检索+

基于微根管观测的盐渍农田向日葵根系三维结构模拟

言巍鹏, 何良伟, 雷国庆, 曾文治

言巍鹏, 何良伟, 雷国庆, 曾文治. 基于微根管观测的盐渍农田向日葵根系三维结构模拟[J]. 中国农村水利水电, 2023, (12): 248-257.
引用本文: 言巍鹏, 何良伟, 雷国庆, 曾文治. 基于微根管观测的盐渍农田向日葵根系三维结构模拟[J]. 中国农村水利水电, 2023, (12): 248-257.
YAN Wei-peng, HE Liang-wei, LEI Guo-qing, CENG Wen-zhi. Three-dimensional Structure Simulation of Sunflower Root System in Saline Farmland Based on Minirhizotron Observation[J]. China Rural Water and Hydropower, 2023, (12): 248-257.
Citation: YAN Wei-peng, HE Liang-wei, LEI Guo-qing, CENG Wen-zhi. Three-dimensional Structure Simulation of Sunflower Root System in Saline Farmland Based on Minirhizotron Observation[J]. China Rural Water and Hydropower, 2023, (12): 248-257.

基于微根管观测的盐渍农田向日葵根系三维结构模拟

基金项目: 

黑龙江省重点研发项目(2022ZX01A26)

国家自然科学基金项目(52209066)

详细信息
    作者简介:

    言巍鹏(1997-),男,硕士研究生,主要从事水土资源高效利用研究。E-mail:2015301580162@whu.edu.cn

    通讯作者:

    曾文治(1989-),男,副教授,博士,主要从事水土资源高效利用研究。E-mail:zengwenzhi1989@whu.edu.cn

  • 中图分类号: S156.4

Three-dimensional Structure Simulation of Sunflower Root System in Saline Farmland Based on Minirhizotron Observation

  • 摘要: 根系作为作物汲取水分、养分的重要器官,其形态结构量化对于田间水肥管理具有重要意义。然而相比于地上部分,当前关于根系形态结构的研究十分有限,特别是在盐渍土壤。以内蒙古河套灌区开展的盐渍农田向日葵田间实验为背景,利用微根管法对不同盐分田块(低盐S1,高盐S2)的向日葵根长密度(RLD)动态变化进行了观测,并结合RootBox根系结构模型(RSA)对各田块作物根系三维结构进行模拟。结果显示,RootBox模型能够较好地模拟不同盐分下大田向日葵的根系形态,其微根管观测点的RLD模拟值与实测值接近,R2超过0.73,RRMSE小于0.28,但S2田块RLD模拟精度相对较低,RMSE比S1田块的高0.31 cm/cm3。并且,S1田块平均RLD模拟分布与微根管RLD观测值分布接近,而在S2田块,二者差异较为显著,特别是在60~90 cm土层。上述结果表明,微根管观测法和根系结构模型可为盐渍农田作物根系形态结构量化提供工具支持,并且高盐田块作物根系量化效果受土壤盐分影响更为显著。
    Abstract: As an important organ for crops to absorb water and nutrients, the quantification of root system is of great significance for water and fertilizer management in the field. However, compared with aboveground parts, the current studies on root system architecture are very limited, especially in saline soils. In this paper, the dynamic changes of sunflower root length density(RLD) in different salt fields(low saline S1, high saline S2) were observed by using minirhizotron based on the experimental data of saline farmland sunflower in Hetao Irrigation District of Inner Mongolia, and the three-dimensional structure of crop roots in each field was simulated by combining root system architecture model(RSA) RootBox. The results showed that RootBox could well simulate the root system of sunflower under different salinity. The simulated RLD values of minirhizotron observation site were close to the measured values, R~2 was more than 0.73 and RRMSE was less than 0.28. However, the RLD simulation accuracy of S2 field was relatively lower, and RMSE was 0.84 higher than that of S1 field. Moreover, the simulated average RLD distribution in S1 field was close to the observed minirhizotron RLD distribution, while the difference was significant in S2 field, especially in the 60-90 cm soil layer. These results indicated that the minirhizotron method and root system architecture model could provide support for quantifying the morphological structure of crop roots in saline fields, and the quantitative effect of crop roots in high saline fields was more significantly affected by soil salinity.
  • [1]

    HASSANI A, AZAPAGIC A, SHOKRI N. Predicting long-term dynamics of soil salinity and sodicity on a global scale[J]. Proceedings of the National Academy of Sciences,2020(52):33 017-33 027.

    [2] 杨真,王宝山.中国盐渍土资源现状及改良利用对策[J].山东农业科学,2015(4):125-130.

    YANG Z, WANG B S. Present Status of saline soil resources and countermeasures for improvement and utilization in China[J].Shandong Agricultural Sciences, 2015(4):125-130.

    [3] 杨劲松,姚荣江,王相平,等.防止土壤盐渍化,提高土壤生产力[J].科学,2021,73(6):30-34.

    YANG J S, YAO R J, WANG X P, et al. Halt soil salinization,boost soil productivity[J]. Science, 201,73(6):30-34.

    [4]

    JOHNSON M G, TINGEY D T, et al. Advancing fine root research with minirhizotrons-ScienceDirect[J]. Environmental and Experimental Botany,2001,45(3):263-289.

    [5]

    BATES G H. A device for the observation of root growth in the soil[J]. Nature, 1937,139(3 527):966-967.

    [6]

    SHI J, SHUIQIANG Y U, LIZHONG Y U, et al. Application of minirhizotron in fine root studies[J]. Chinese Journal of Applied Ecology, 2006,17(4):715-719.

    [7]

    LIEDGENS M, RICHNER W. Minirhizotron observations of the spatial distribution of the maize root system[J]. Agronomy Journal,2001,93(5):1 097-1 104.

    [8] 周本智,张守攻,傅懋毅.植物根系研究新技术Minirhizotron的起源,发展和应用[J].生态学杂志,2007,26(2):253-260.

    ZHOU B Z, ZHANG S G, FU F Y. Minirhizotron, a new technique for plant root system research:its invention, development and application.[J]. Chinese Journal of Ecology, 2007,26(2):253-260.

    [9]

    AMATO M, LUPO F, BITELLA G, et al. A high quality low-cost digital microscope minirhizotron system[J]. Computers and Electronics in Agriculture, 2012,80:50-53.

    [10]

    BOX J E, RAMSUER E L. Minirhizotron wheat root data:comparisons to soil core root data[J]. Agronomy Journal, 1962,85(5):1 058-1 060.

    [11]

    GRAY S B, STRELLNER R S, Puthuval K K, et al. Minirhizotron imaging reveals that nodulation of field-grown soybean is enhanced by free-air CO2 enrichment only when combined with drought stress[J]. Functional Plant Biology, 2013,40(2):137-147.

    [12] 吴盼盼,唐子宗,杨乐,等.水稻根系三维建模及可视化方法研究进展[J].福建农业学报,2021,36(8):972-980.

    WU P P, TANG Z S, YANG L, et al. Visualization of Rice Root System by 3D Modeling:A Review[J]. Fujian Journal of Agricultural Sciences, 2021,36(8):972-980.

    [13]

    DEANS J D, FORD E D. Modelling root structure and stability[J].Tree Root Systems and Their Mycorrhizas, 1983:189-195.

    [14]

    PAGÈS L, JORDAN M O, Picard D. A simulation model of the three-dimensional architecture of the maize root system[J]. Plant and Soil, 1989,119(1):147-154.

    [15]

    DIGGLE A J. ROOTMAP—a model in three-dimensional coordinates of the growth and structure of fibrous root systems[J]. Plant and Soil,1988,105:169-178.

    [16]

    PAGÈS L, VERCAMBRE G, DROUET J L, et al. Root Typ:a generic model to depict and analyse the root system architecture[J].Plant and Soil, 2004,258(1):103-119.

    [17]

    SPEK L Y. Generation and visualization of root-like structures in a three-dimensional space[J]. Plant and Soil, 1997,197(1):9-18.

    [18]

    LYNCH J P, Nielsen K L, DAVIS R D, et al. SimRoot:modelling and visualization of root systems.[J]. Plant and Soil, 1997,188(1):139-151.

    [19]

    GARRÉS, PAGÈS L, LALOY E, et al. Parameterizing a dynamic architectural model of the root system of spring barley from minirhizotron data[J]. Vadose Zone Journal, 2012,11(4):1 325-1 339.

    [20] 钟南,罗锡文,秦琴.基于生长函数的大豆根系生长的三维可视化模拟[J].农业工程学报,2008,24(7):151-154.

    ZHONG N, LUO X W, QING Q. Modeling and visualization of three-dimensional soybean root system growth based on growth functions[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008,24(7):151-154.

    [21] 刘桃菊,唐建军,戚昌瀚.水稻形态的分形特征及其可视化模拟研究[J].江西农业大学学报,2002,24(5):583-586.

    LIU T J, TANG J J, QI C H. A study on the fractal characters and the visual simulation of rice morphology[J]. Acta Agricultural Universitatis Jiangxiensis, 2002,24(5):583-586.

    [22] 冀荣华,李想,祁力钧,等.[J].排灌机械工程学报,2014,32(9):795-801.

    JI R H, LI X, QI L J, et al. Construction and implementation of three-dimensional root growth model of potted tomato[J]. Journal of Drainage and Irrigation Machinery Engineering, 2014,32(9):795-801.

    [23] 张吴平,郭焱,李保国.小麦苗期根系三维生长动态模型的建立与应用[J].中国农业科学,2006,39(11):2 261-2 269.

    ZHANG W P, GUO Y, LI B G. Development and application of three-dimensional growth model of root system in wheat seedling[J]. Scientia Agricultura Sinica, 2006,39(11):2 261-2 269.

    [24] 彭英,张素兰.基于L系统的水稻根系建模与可视化[J].计算机系统应用,2020,29(6):22-28.

    PENG Y, ZHANG S L. L-System-Based modeling and visualization of rice root system[J]. Computer Systems&Applications,2020,29(6):22-28.

    [25]

    LEITNER D, KLEPSCH S, BODNER G, et al. A dynamic root system growth model based on L-Systems[J]. Plant and Soil, 2010,332:177-192.

    [26]

    DE MORAES M T, BENGOUGH A G, DEBIASI H, et al. Mechanistic framework to link root growth models with weather and soil physical properties, including example applications to soybean growth in Brazil[J].Plant and Soil, 2018,428:67-92.

    [27]

    FANG Y, YABUSAKI S B, AHKAMI A H, et al. An efficient three-dimensional rhizosphere modeling capability to study the effect of root system architecture on soil water and reactive transport[J]. Plant and Soil, 2019,441:33-48.

    [28]

    JULKOWSKA M M, HOEFSLOOT H C J, MOL S, et al. Capturing Arabidopsis root architecture dynamics with ROOT-FIT reveals diversity in responses to salinity[J]. Plant Physiology, 2014,166(3):1 387-1 402.

    [29]

    ARLOVA R, BOER D, HAYES S, et al. Root plasticity under abiotic stress[J]. Plant Physiology, 2021,187(3):1 057-1 070.

    [30] 马韬.河套灌区向日葵-盐-氮响应机制及生长模拟研究[D].湖北武汉:武汉大学,2019.MA T. Study on the response mechanism and growth simulation of sunflowers in Hetao Irrigation area[D]. Hubei Wuhan:Wuhan University, 2019.
    [31] 曾文治.向日葵水,氮,盐耦合效应及其模拟[D].湖北武汉:武汉大学,2015.zeng W Z. Research and simulation for the coupling effects of water,nitrogen, and salt on sunflower[D]. Hubei Wuhan:Wuhan University, 2015.
    [32]

    ROOSE T, FOWLER A C, DARRAH P R. A mathematical model of plant nutrient uptake[J]. Journal of Mathematical Biology, 2001,42:347-360.

    [33]

    LEITNER D, MEUNIER F, BODNER G, et al. Impact of contrasted maize root traits at flowering on water stress tolerance:A simulation study[J]. Field Crops Research, 2014,165:125-137.

    [34]

    PAGÈS L, JUN X. Potential and actual root growth variations in root systems:modeling them with a two-step stochastic approach[J].Plant and Soil, 2013,373:723-735.

    [35] 程晓光,张静,宫辉力.基于PEST自动校正的HSPF水文模拟研究[J].人民黄河,2013(12):33-36.

    CHENG X G,ZHANG J,GONG H L. Research on the HSPF Hydrologic Simulation based the PEST Automatic Calibration-Case Study:Guishui River Basin,Beijing[J]. Yellow River,2013(12):33-36.

    [36] 舒晓娟,陈洋波,黄锋华. PEST在WetSpa分布式水文模型参数率定中的应用[J].水文,2009,29(5):45-49.

    SHU X J,CHEN Y B,HUANG F H, et al. Application of PEST in the parameter calibration of wetspa distributed hydrological model[J]. Journal of China Hydrology,2009,29(5):45-49.

    [37]

    MORANDAGE S. Characterization of root system architectures from field root sampling methods[D]. Bonn:Universitäts-und Landesbibliothek, 2020.

    [38]

    SVANE S F, DAM E B, CARSTENSEN J M, et al. A multispectral camera system for automated minirhizotron image analysis[J]. Plant and Soil, 2019,441:657-672.

    [39]

    MORANDAGE S, LALOY E, SCHNEPF A, et al. Bayesian inference of root architectural model parameters from synthetic field data[J]. Plant and soil, 2021,467:67-89.

    [40]

    ZOU Y, ZHANG Y, TESTERINK C. Root dynamic growth strategies in response to salinity[J]. Plant, Cell and Environment, 2022,45(3):695-704.

    [41]

    ZOLLA G, HEIMER Y M, BARAK S. Mild salinity stimulates a stress-induced morphogenic response in Arabidopsis thaliana roots[J]. Journal of experimental botany, 2010,61(1):211-224.

    [42]

    KUMAR S, AHMAD A, RAO V, et al. Effect of salinity on growth and leaf area of sunflower(Helianthus annuus L.)cv. Suntech-85[J]. Afr. J. Agric. Res, 2014,9(15):1 144-1 150.

    [43]

    SHILA A, HAQUE M A, AHMED R, et al. Effect of different levels of salinity on germination and early seedling growth of sunflower[J]. World Research Journal of Agricultural Sciences, 2016,3(1):48-53.

    [44]

    GUO D, LI H, MITCHELL R J, et al. Fine root heterogeneity by branch order:exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic met-hods[J]. New Phytologist, 2010,177(2):443-456.

    [45]

    RUIJTER F J, VEEN B W, OIJEN M. A comparison of soil core sampling and minirhizotrons to quantify root development of fieldgrown potatoes[J]. Plant and Soil, 1996,182(2):301-312.

计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-09

目录

    /

    返回文章
    返回