高级检索+

泵站虹吸式出水流道驼峰排气过程气液两相流研究

Research on the Gas-liquid Two-phase Flow During the Hump Exhaust Process in the Siphon Outlet Channel of the Pumping Station

  • 摘要: 采用 RNG k-? 紊流模型和 VOF 气液两相流模型对大口径的方形管虹吸式出水流道顶部大气团的排出过程进行数值模拟,计算不同高宽比的驼峰一次性带走气团所需要的最小驼峰平均流速 va和气团破碎完全带走需要的驼峰平均流速 vb以及排出时间 tb。结果显示,随着驼峰高宽比减小,一次性排出驼峰气团需要的流速 va也减小,当驼峰高宽比从 0.4下降到 0.3时,对应的 va下降了 11.6%,但流速仍然很大;在较小的驼峰流速下,对气团进行破碎排出全过程模拟,经过一段时间后,气泡也能全部破碎并排出,最终形成稳定虹吸。在一定范围内,排气时间越长,驼峰处的流速越小,当tb从120 s增加到 180 s时,对应的 vb降低了 16.67%。本研究对于泵站虹吸式出水流道驼峰截面尺寸设计以及泵站稳定运行具有重要意义。

     

    Abstract: The RNG k-ε turbulence model and VOF gas-liquid two-phase flow model are used to numerically simulate the exhaust processof the air masses at the top of the large-diameter square pipe siphon outlet channel,and calculating the minimum hump average flow velocity varequired for humps with different aspect ratios to take away the air masses at one time and the average hump flow velocity vb and dischargetime tb required for air masses fragmentation to completely exhausted.The results show that as the hump aspect ratio decreases,the flow veloc-ity varequired to discharge the hump air masses at one time also decreases. When the hump aspect ratio decreases from 0.4 to 0.3,the corre-sponding va decreases by 11.6%,but the flow rate is still large. Under a smaller hump flow rate,the whole process of crushing and discharging the air masses is simulated. After a period of time,all the air masses can be broken and discharged,and finally a stable siphon is formed.Within a certain range,the longer the exhaust time,the smaller the flow velocity at the hump. When tb increases from 120s to 180s,the cor-responding vb decreases by 16.67%.This study is of great significance to the design of the hump section size of the siphon outlet channel andthe stable operation of the pumping station.

     

/

返回文章
返回