高级检索+

基于随机系数面板数据模型的滑坡涌浪时序预测研究

Time Series Prediction of Landslide Generated Waves Using a Random Coefficient Panel Data Model

  • 摘要: 滑坡涌浪是近水滑坡诱发的一种重要次生灾害,涌浪波参数的有效预测对滑坡涌浪灾害的风险评估具有重要意义。常规的基于试验数据构建的滑坡涌浪预测模型通常关注涌浪波参数的瞬时值,通过选取滑坡体的厚度、速度等参数作为自变量,计算涌浪波的最大波高、最大振幅等瞬时参数。目前,滑坡体参数与涌浪波参数的时序量化关系尚待探明。本研究以涌浪波参数的时序变化特征为研究对象,采用散粒体滑坡材料开展了物理模型试验,并基于试验数据建立了包含时间序列的滑坡体和涌浪波参数多样本三维面板数据库,然后基于随机系数面板数据模型构建了滑坡体参数和涌浪波参数的时序量化模型,最后通过试验数据验证了模型的有效性。该模型实现了涌浪波参数的时序预测,有效弥补了常规模型仅能预测涌浪波参数瞬时值的不足。

     

    Abstract: The impulse wave is a universally existent hazard induced by landslides nearby water basins. Predicting the characteristics of the impulse waves is of great importance for risk assessment of landslide generated waves. Previous studies often focused on the instant wave parameters and selected several landslides parameters such as thickness and velocity to build predictive models for wave characteristics such as height and amplitude. The time series relations between landslide parameters and wave parameters need to be determined. This paper gives insights into the time series variation of the wave characteristics. Experiments are first conducted by using granular particles, and a time series panel database is built by using experimental data. Then a time series prediction model is established for wave characteristics based on a random coefficient panel data model, and the model is tested with the support of experimental data. The proposed model provides a temporal predictive method, which compensates for the deficiency of conventional models that can only predict the instantaneous wave parameters.

     

/

返回文章
返回