高级检索+

极端干旱对长江漫滩湿地温室气体排放的影响——以南京八卦洲湿地为例

唐珍妮, 刘艺轩, 周旭东, 余珂, 于志国

唐珍妮, 刘艺轩, 周旭东, 余珂, 于志国. 极端干旱对长江漫滩湿地温室气体排放的影响——以南京八卦洲湿地为例[J]. 中国农村水利水电, 2023, (4): 69-81.
引用本文: 唐珍妮, 刘艺轩, 周旭东, 余珂, 于志国. 极端干旱对长江漫滩湿地温室气体排放的影响——以南京八卦洲湿地为例[J]. 中国农村水利水电, 2023, (4): 69-81.
TANG Zhen-ni, LIU Yi-xuan, ZHOU Xu-dong, YU Ke, YU Zhi-guo. Effects of Extreme Drought on Greenhouse Gas Emissions in Yangtze Floodplain Wetland: A Case Study of Baguazhou Wetland in Nanjing[J]. China Rural Water and Hydropower, 2023, (4): 69-81.
Citation: TANG Zhen-ni, LIU Yi-xuan, ZHOU Xu-dong, YU Ke, YU Zhi-guo. Effects of Extreme Drought on Greenhouse Gas Emissions in Yangtze Floodplain Wetland: A Case Study of Baguazhou Wetland in Nanjing[J]. China Rural Water and Hydropower, 2023, (4): 69-81.

极端干旱对长江漫滩湿地温室气体排放的影响——以南京八卦洲湿地为例

基金项目: 

国家自然科学基金面上项目(41877337)

详细信息
    作者简介:

    唐珍妮(1998-),女,硕士研究生,主要研究方向为生态水文/生态气象。E-mail:20201201075@nuist.edu.cn

    通讯作者:

    于志国(1982-),男,教授,博士,主要研究方向为生态水文/生态气象。E-mail:zhiguo.yu@nuist.edu.cn

  • 中图分类号: X16;P426.616

Effects of Extreme Drought on Greenhouse Gas Emissions in Yangtze Floodplain Wetland: A Case Study of Baguazhou Wetland in Nanjing

  • 摘要: 今夏我国长江流域在极端高温下遭遇了自1961年以来最严重的气象水文干旱,长江漫滩大面积落干,严重威胁江滩湿地生态系统。研究选取南京市八卦洲湿地沉积物为研究对象,通过室内培养实验,设置了20、30℃两个温度梯度以及全淹水、半淹水和干处理3个水分梯度模拟了干燥再湿润对沉积物温室气体排放的影响,并结合三维荧光光谱技术(3D-EEMs)等方法探讨其相应影响机制。不同温度处理结果表明:增温促进了沉积物的二氧化碳(CO2)排放(P<0.05)和甲烷(CH4)排放(P>0.05),30℃下3个样点累积排放量的CO2当量共为987.74 mg/kg,是20℃培养处理下的1.62倍。其中,A点沉积物对总排放的贡献最高(63.36%)。不同干湿处理结果表明:相同温度处理下累积排放量的CO2当量由高到低为:全淹水处理>半淹水处理>干处理,30℃培养处理时全淹水处理下CO2当量为干处理下的9.97倍。高温高水位条件下沉积物温室气体排放的CO2当量可达低温干燥环境下的28倍以上,其中CO2排放贡献率为99.7%。研究结果对评估未来长期干旱和极端降水频发影响下沉积物碳排放和制定碳减排政策具有重要意义。
    Abstract: This summer, China’s Yangtze River Basin suffered the most severe meteorological and hydrological drought since 1961 under extreme heat, and the Yangtze River roaming beaches ran dry over a large area, seriously affecting the carbon cycle of the riverbank wetland ecosystem. An incubation experiment was conducted by using the sediments selected from Baguazhou wetland in Nanjing to investigate the effects of drying and rewetting on wetland sediments GHG emissions and to explore the corresponding influencing mechanism based on threedimensional fluorescence spectroscopy(3D-EEMs) and other methods under two different types of temperature(20 ℃ and 30 ℃) and three different moisture gradients(fully submerged, semi-submerged and dry). The results under different temperature treatments show that warming promoted carbon dioxide(CO2) emissions(P<0.05) and methane(CH4) emissions(P>0.05), and the total CO2 equivalent of cumulative emissions from the three sites at 30 ℃ is 987.74 mg/kg, which is 1.62 times higher than that under the 20 ℃ incubation treatment. And the sediment at Site A contributed the most to the total emissions(63.36%). The results under different moisture circumstances show that the CO2 equivalents of cumulative emissions under the same temperature treatment are from high to low: fully submerged treatment > semi-submerged treatment > dry treatment, and the CO2 equivalents under fully submerged treatment are 9.97 times higher than those under dry treatment at 30 ℃ incubation treatment. The CO2 equivalent of sediment greenhouse gas emissions under high temperature and high water level conditions can reach more than 28 times of that under low temperature and dry environment, in which the contribution of CO2 emissions is 99.7%. The results of the study have important implications for assessing sediment carbon emissions and formulating carbon reduction policies under the influence of long-term drought and extreme precipitation frequency in the future.
  • [1]

    KOSTEN S, VAN DEN BERG S, MENDONCA R, et al. Extreme drought boosts CO2 and CH4 emissions from reservoir drawdown areas[J]. Inland Waters, 2018,8(3):329-340.

    [2]

    LU B, SONG L, ZANG S, et al. Warming promotes soil CO2 and CH4 emissions but decreasing moisture inhibits CH4 emissions in the permafrost peatland of the Great Xing′an Mountains[J]. Science of the Total Environment, 2022,829:154 725.

    [3]

    MORA C, SPIRANDELLI D, FRANKLIN E C, et al. Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions[J]. Nature Climate Change, 2018,8(12):1 062.

    [4] 夏军,陈进,佘敦先. 2022年长江流域极端干旱事件及其影响与对策[J].水利学报,2022,53:1-11.

    XIA J, CHEN J, SHE D X. Impacts and countermeasures of extreme drought in the Yangtze River Basin in 2022[J]. Journal of Hydraulic Engineering, 2022,53:1-11.

    [5] 黄建平,陈文,温之平,等.新中国成立70年以来的中国大气科学研究:气候与气候变化篇[J].中国科学:地球科学,2019,49(10):1 607-1 640.

    HUANG J P, CHEN W, WEN Z P, et al. Review of Chinese atmospheric science research over the past 70 years:Climate and climate change[J]. Science China Earth Sciences, 2019,49(10):1 607-1 640.

    [6] 尹家波,郭生练,杨妍,等.基于陆地水储量异常预估中国干旱及其社会经济暴露度[J].中国科学:地球科学,2022,52(10):2 061-2 076.

    YIN J B, GUO S L, YANG Y, et al. Projection of droughts and their socioeconomic exposures based on terrestrial water storage anomaly over China[J]. Science China Earth Sciences, 2022,52(10):2 061-2 076.

    [7]

    YANG P, HE Q H, HUANG J F, et al. Fluxes of greenhouse gases at two different aquaculture ponds in the coastal zone of southeastern China[J]. Atmospheric Environment, 2015,115:269-277.

    [8] 朱俊羽.我国东部湖群CO2和CH4气体排放特征及其影响因素[D].北京:中国矿业大学,2022.ZHU J Y. Characteristics and Influencing Factors of Carbon Dioxide and Methane Emission from Lakes in Eastern China[D]. China University of Mining and Technology, 2022.
    [9]

    PINTO R M D, WEIGELHOFER G, DIAZ-PINES E, et al. Riverfloodplain restoration and hydrological effects on GHG emissions:Biogeochemical dynamics in the parafluvial zone[J]. Science of the Total Environment, 2020,715:13.

    [10]

    HUYGENS D, SCHOUPPE J, ROOBROECK D, et al. Drying-rewetting effects on N cycling in grassland soils of varying microbial community composition and management intensity in south central Chile[J]. Applied Soil Ecology, 2011,48(3):270-279.

    [11] 张更喜,粟晓玲,刘文斐.考虑CO2浓度影响的中国未来干旱趋势变化[J].农业工程学报,2021,37(1):84-91.

    ZHANG G X, SU X L, LIU W F. Future drought trend in China considering CO2 concentration[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021,37(1):84-91.

    [12] 温庆志,孙鹏,张强,等.非平稳标准化降水蒸散指数构建及中国未来干旱时空格局[J].地理学报,2020,75(7):1 465-1 482.

    WEN Q Z, SUN P, ZHANG Q, et al. A multi-scalar drought index for global warming:The non-stationary standardized precipitation evaporation index(NSPEI)and spatio-temporal patterns of future drought in China[J]. Acta Geographica Sinica, 2020,75(7):1 465-1 482.

    [13]

    ALEXANDER L V, ZHANG X, PETERSON T C, et al. Global observed changes in daily climate extremes of temperature and precipitation[J]. Journal of Geophysical Research-Atmospheres, 2006,111(D5):22.

    [14]

    GROISMAN P Y, KNIGHT R W, EASTERLING D R, et al.Trends in intense precipitation in the climate record[J]. Journal of Climate, 2005,18(9):1 326-1 350.

    [15]

    MARENGO J A, CAMARGO C C. Surface air temperature trends in Southern Brazil for 1960-2002[J]. International Journal of Climatology, 2008,28(7):893-904.

    [16]

    MARENGO J A, JONES R, ALVES L M, et al. Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system[J]. International Journal of Climatology, 2009,29(15):2 241-2 255.

    [17] 曹博,张勃,马彬,等.基于SPEI指数的长江中下游流域干旱时空特征分析[J].生态学报,2018,38(17):6 258-6 267.

    CAO B, ZHANG B, MA B, et al. Spatial and temporal characteristics analysis of drought based on SPEI in the Middle and Lower Yangtze Basin[J]. Acta Ecologica Sinica, 2018,38(17):6 258-6 267.

    [18] 吉戴婧琪,元媛,韩剑桥.中国极端降水事件的时空变化及趋势预测[J].中国农村水利水电,2022(10):74-80.

    JI D J Q, YUAN Y, HAN J Q. Spatial-temporal changes and trend predictions of extreme precipitation events in China[J]. China Rural Water and Hydropower, 2022(10):74-80.

    [19]

    CHIMNER R A, COOPER D J. Influence of water table levels on CO2 emissions in a Colorado subalpine fen:an in situ microcosm study[J]. Soil Biology and Biochemistry, 2003,35(3):345-351.

    [20]

    DENDOOVEN L, ANDERSON J M. Maintenance of denitrification potential in pasture soil following anaerobic events[J]. Soil Biology and Biochemistry, 1995,27(10):1 251-1 260.

    [21] 王嫒华,苏以荣,李杨,等.水田和旱地土壤有机碳周转对水分的响应[J].中国农业科学,2012,45(2):266-274.

    WANG Y H, SU Y R, LI Y, et al. Response of the Turnover of Soil Organic Carbon to the Soil Moisture in Paddy and Upland Soil[J].Scientia Agricultura Sinica, 2012,45(2):266-274.

    [22] 王德宣,丁维新,王毅勇.若尔盖高原与三江平原沼泽湿地CH4排放差异的主要环境影响因素[J].湿地科学,2003,1(1):63-67.

    WANG D X, DING W X, WANG Y Y. Influence of major environmental factors on difference of methane emission from Zoigêplateau and Sanjiang plain Wetlands[J]. Wetland Science, 2003,1(1):63-67.

    [23] 宋长春,杨文燕,徐小锋,等.沼泽湿地生态系统土壤CO2和CH4排放动态及影响因素[J].环境科学,2004,25(4):1-6.

    SONG C C, YANG W Y, XU X F, et al. Dynamics of CO2 and CH4concentration in the mire soil and its impact factors[J]. Environmental Science, 2004,25(4):1-6.

    [24] 葛瑞娟,宋长春,王丽丽.湿地甲烷生物化学过程及影响因素的研究进展[J].土壤通报,2011,42(1):229-235.

    GE R J, SONG C C, WANG L L. Review on biochemical processes of methane and its impacting factors in wetlands[J]. Chinese Journal of Soil Science, 2011,42(1):229-235.

    [25]

    SONG Y Y, SONG C C, HOU A X, et al. Temperature, soil moisture, and microbial controls on CO2 and CH4 emissions from a permafrost peatland[J]. Environmental Progress&Sustainable Energy, 2021,40(5).

    [26]

    WANG X, LI X, HU Y, et al. Effect of temperature and moisture on soil organic carbon mineralization of predominantly permafrost peatland in the Great Hing′an Mountains, Northeastern China[J].Journal of Environmental Sciences, 2010,22(7):1 057-66.

    [27]

    MCKNIGHT, DM, BOYER, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity[J]. Limnology and Oceanography, 2001.

    [28]

    HERNES P J, BERGAMASCHI B A, ECKARD R S, et al. Fluorescence-based proxies for lignin in freshwater dissolved organic matter[J]. Journal of Geophysical Research-Biogeosciences,2009,114:10.

    [29]

    STEDMON C A, MARKAGER S, BRO R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy[J]. Marine Chemistry, 2003,82(3):239-254.

    [30]

    ISHII S K L, BOYER T H. Behavior of Reoccurring PARAFAC Components in Fluorescent Dissolved Organic Matter in Natural and Engineered Systems:A Critical Review[J]. Environmental Science&Technology, 2012,46(4):2 006-2 017.

    [31]

    MLADENOV N, ZHENG Y, MILLER M P, et al. Dissolved Organic Matter Sources and Consequences for Iron and Arsenic Mobilization in Bangladesh Aquifers[J]. Environmental Science&Technology, 2010, 44(1):123-128.

    [32] 黄俊霖,苏婧,孙源媛,等.白水江表层沉积物溶解性有机质荧光特性研究[J].环境污染与防治,2020, 42(6):775-779+787.

    HUANG J L, SU J, SUN Y Y, et al. Fluorescence characteristics of dissolved organic matter in surface sediments of Baishui River[J].Environmental Pollution&Control, 2020,42(6):775-779+787.

    [33]

    CHEN M L, JAFFE R. Photo-and bio-reactivity patterns of dissolved organic matter from biomass and soil leachates and surface waters in a subtropical wetland[J]. Water Research, 2014,61:181-190.

    [34]

    HONG H L, WU S J, WANG Q, et al. Fluorescent dissolved organic matter facilitates the phytoavailability of copper in the coastal wetlands influenced by artificial topography[J]. Science of the Total Environment, 2021,790:12.

    [35]

    STEDMON C A, BRO R. Characterizing dissolved organic matter fluorescence with parallel factor analysis:a tutorial[J]. Limnology and Oceanography-Methods, 2008,6:572-579.

    [36]

    WARD C P, NALVEN S G, CRUMP B C, et al. Photochemical alteration of organic carbon draining permafrost soils shifts microbial metabolic pathways and stimulates respiration[J]. Nature Communications, 2017,8:8.

    [37]

    PRAIRIE Y T. Carbocentric limnology:looking back, looking forward[J]. Canadian Journal of Fisheries and Aquatic Sciences,2008,65(3):543-548.

    [38] 申钊颖,弓晓峰,江良,等.不同条件对湿地土壤溶解性有机质提取的影响[J].环境污染与防治,2020,42(1):39-43.

    SHEN Z Y, GONG X F, JIANG L, et al. The effects of different conditions on extraction of dissolved organic matter from wetland soil[J]. Environmental Pollution&Control, 2020,42(1):39-43.

    [39]

    FELLMAN J B, HOOD E, SPENCER R G M. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems:A review[J]. Limnology and Oceanography, 2010,55(6):2 452-2 462.

    [40]

    BALCARCZYK K L, JONES J B, JAFFE R, et al. Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost[J]. Biogeochemistry,2009,94(3):255-270.

    [41]

    MURPHY K R, STEDMON C A, WAITE T D, et al. Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy[J]. Marine Chemistry, 2008, 108(1-2):40-58.

    [42]

    STEDMON C A, MARKAGER S. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis[J]. Limnology and Oceanography, 2005,50(2):686-697.

    [43]

    COBLE P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 1996,51(4):325-346.

    [44]

    COBLE P G, DEL CASTILLO C E, AVRIL B. Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon[J]. Deep Sea Research Part II:Topical Studies in Oceanography, 1998,45(10):2 195-2 223.

    [45]

    DAINARD P G, GUéGUEN C. Distribution of PARAFAC modeled CDOM components in the North Pacific Ocean, Bering, Chukchi and Beaufort Seas[J]. Marine Chemistry, 2013,157:216-223.

    [46]

    GAO Z, GUéGUEN C. Size distribution of absorbing and fluorescing DOM in Beaufort Sea, Canada Basin[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2017,121:30-37.

    [47]

    MCINTYRE A M, GUEGUEN C. Binding interactions of algal-derived dissolved organic matter with metal ions[J]. Chemosphere,2013,90(2):620-626.

    [48]

    CORY R M, MCKNIGHT D M. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter[J]. Environmental Science&Technology, 2005,39(21):8 142-8 149.

    [49]

    GARCIA R D, REISSIG M, QUEIMALINOS C P, et al. Climatedriven terrestrial inputs in ultraoligotrophic mountain streams of Andean Patagonia revealed through chromophoric and fluorescent dissolved organic matter[J]. Science of the Total Environment,2015,521:280-292.

    [50]

    FELLMAN J B, D′AMORE D V, HOOD E, et al. Fluorescence characteristics and biodegradability of dissolved organic matter in forest and wetland soils from coastal temperate watersheds in southeast Alaska[J]. Biogeochemistry, 2008,88(2):169-184.

    [51] 桑文秀,杨华蕾,唐剑武.不同土地利用类型土壤温室气体排放对温湿度的响应[J].华东师范大学学报(自然科学版),2021(4):109-120.

    SANG W X, YANG H L, TANG J W. Response of soil greenhouse gas emissions to temperature and moisture across different land-use types[J]. Journal of East China Normal University(Natural Science), 2021(4):109-120.

    [52] 董星丰,陈强,臧淑英,等.温度和水分对大兴安岭多年冻土区森林土壤有机碳矿化的影响[J].环境科学学报,2019,39(12):4 269-4 275.

    DONG X F, CHEN Q, ZANG S Y, et al. Effect of temperature and moisture on soil organic carbon mineralization of predominantly permafrost forest in the Great Hing′an Mountains[J]. Acta Scientiae Circumstantiae, 2019,39(12):4 269-4 275.

    [53] 杨继松,刘景双,孙丽娜.温度、水分对湿地土壤有机碳矿化的影响[J].生态学杂志,2008,27(1):38-42.

    YANG J S, LIU J S, SUN L N. Effects of temperature and soil moisture on wetland soil organic carbon mineralization[J]. Chinese Journal of Ecology, 2008,27(1):38-42.

    [54] 王丹,吕瑜良,徐丽,等.水分和温度对若尔盖湿地和草甸土壤碳矿化的影响[J].生态学报,2013,33(20):8.

    WANG D, LV Y L, XU L, et al. The effect of moisture and temperature on soil Cmineralization in wetland and steppe of the Zoige region, China[J]. Acta Ecologica Sinica, 2013,33(20):8.

    [55] 米亮,王光华,金剑,等.黑土微生物呼吸及群落功能多样性对温度的响应[J].应用生态学报,2010,21(6):1 485-1 491.

    MI L, WANG G H, JIN J, et al. Responses of black soil′s microbial respiration and community functional diversity to temperature[J]. Chinese Journal of Applied Ecology, 2010,21(6):1 485-1 491.

    [56] 丁维新,蔡祖聪.温度对甲烷产生和氧化的影响[J].应用生态学报,2003(4):604-608.

    DING W X, CAI Z C. Effect of temperature on methane production and oxidation in soils[J]. Chinese Journal of Applied Ecology,2003(4):604-608.

    [57] 栗方亮,李忠佩,刘明,等.氮素浓度和水分对水稻土硝化作用和微生物特性的影响[J].中国生态农业学报,2012,20(9):1 113-1 118.

    LI F L, LI Z P, LIU M, et al. Effects of different concentrations of nitrogen and soil moistures on paddy soil nitrification and microbial characteristics[J]. Chinese Journal of Eco-Agriculture, 2012,20(9):1 113-1 118.

    [58] 郝瑞军,李忠佩,车玉萍,等.好气与淹水条件下水稻土各粒级团聚体有机碳矿化量[J].应用生态学报,2008,19(9):1 944-1 950.

    HAO R J, LI Z P, CHE Y P, et al. Organic carbon mineralization in various size aggregates of paddy soil under aerobic and submerged conditions[J]. Chinese Journal of Applied Ecology,2008,19(9):1 944-1 950.

    [59]

    PARANAIBA J R, QUADRA G, JOSUE I I P, et al. Sediment drying-rewetting cycles enhance greenhouse gas emissions, nutrient and trace element release, and promote water cytogenotoxicity[J].Plos One, 2020,15(4):21.

    [60]

    SCHIMEL J P, WETTERSTEDT J A M, HOLDEN P A, et al.Drying/rewetting cycles mobilize old C from deep soils from a California annual grassland[J]. Soil Biology&Biochemistry,2011,43(5):1 101-1 103.

    [61]

    HENNEBERG A, BRIX H, SORRELL B K. The interactive effect of Juncus effusus and water table position on mesocosm methanogenesis and methane emissions[J]. Plant and Soil, 2016,400(1-2):45-54.

    [62]

    MANDER U, MADDISON M, SOOSAAR K, et al. The impact of a pulsing water table on wastewater purification and greenhouse gas emission in a horizontal subsurface flow constructed wetland[J].Ecological Engineering, 2015,80:69-78.

    [63]

    KANNENBERG S A, DUNN S T, LUDWIG S M, et al. Patterns of potential methanogenesis along soil moisture gradients following drying and rewetting in midwestern prairie pothole wetlands[J].Wetlands, 2015,35(4):633-640.

    [64] 丁维新,蔡祖聪.土壤有机质和外源有机物对甲烷产生的影响[J].生态学报,2002,22(10):1 672-1 679.

    DING W X, CAI Z C. Effects of soil organic matter and exogenous organic materials on methane production in and emission from wetlands[J]. Acta Ecologica Sinica, 2002,22(10):1 672-1 679.

    [65]

    JIN H, YOON T K, LEE S H, et al. Enhanced greenhouse gas emission from exposed sediments along a hydroelectric reservoir during an extreme drought event[J]. Environmental Research Letters,2016,11(12):9.

    [66]

    ZHANG W S, LI H P, XIAO Q T, et al. Urban rivers are hotspots of riverine greenhouse gas(N2O, CH4, CO2)emissions in the mixed-landscape chaohu lake basin[J]. Water Research, 2021,189:14.

    [67]

    ZHOU Y Q, XIAO Q T, YAO X L, et al. Accumulation of Terrestrial Dissolved Organic Matter Potentially Enhances Dissolved Methane Levels in Eutrophic Lake Taihu, China[J]. Environmental Science&Technology, 2018,52(18):10 297-10 306.

    [68]

    VIZZA C, WEST W E, JONES S E, et al. Regulators of coastal wetland methane production and responses to simulated global change[J]. Biogeosciences, 2017,14(2):431-46.

    [69]

    XIAO Q T, ZHANG M, HU Z H, et al. Spatial variations of methane emission in a large shallow eutrophic lake in subtropical climate[J]. Journal of Geophysical Research-Biogeosciences, 2017,122(7):1 597-1 614.

    [70] 李忠佩,张桃林,陈碧云.可溶性有机碳的含量动态及其与土壤有机碳矿化的关系[J].土壤学报,2004,41(4):544-552.

    LI Z P, ZHANG T L, CHEN B Y. Dynamics of soluble organic carbon and its relation to mineralization of soil organic carbon[J].Acta Pedologica Sinica, 2004,41(4):544-552.

    [71] 王清奎,汪思龙,冯宗炜,等.土壤活性有机质及其与土壤质量的关系[J].生态学报,2005,25(3):513-519.

    WANG Q K, WANG S L, FENG Z W, et al. Active soil organic matter and its relationship with soil quality[J]. Acta Ecologica Sinica, 2005,25(3):513-519.

    [72] 王健波,张燕卿,严昌荣,等.干湿交替条件下土壤有机碳转化及影响机制研究进展[J].土壤通报,2013,44(4):998-1 004.

    WANG J B, ZHANG Y Q, YAN C R, et al. Research Advances in Soil Organic Carbon Transformation as Related to Drying and Wetting Cycles[J]. Chinese Journal of Soil Science, 2013,44(4):998-1 004.

    [73] 朴世龙,张新平,陈安平,等.极端气候事件对陆地生态系统碳循环的影响[J].中国科学:地球科学,2019,49(9):1 321-1 334.

    PIAO S L, ZHANG X P, CHEN A P, et al. The impacts of climate extremes on the terrestrial carbon cycle:A review[J]. Science China Earth Sciences, 2019,49(9):1 321-1 334.

    [74]

    GALLO E L, LOHSE K A, FERLIN C M, et al. Physical and biological controls on trace gas fluxes in semi-arid urban ephemeral waterways[J]. Biogeochemistry, 2014,121(1):189-207.

    [75]

    YANG L, LU F, WANG X K, et al. Surface methane emissions from different land use types during various water levels in three major drawdown areas of the Three Gorges Reservoir[J]. Journal of Geophysical Research-Atmospheres, 2012,117:11.

计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-09

目录

    /

    返回文章
    返回