高级检索+

压缩空气抽水蓄能系统蓄能罐参数配置分析

鲍文龙, 冯陈, 蔡文方, 汪春, 杨丹, 汤络翔

鲍文龙, 冯陈, 蔡文方, 汪春, 杨丹, 汤络翔. 压缩空气抽水蓄能系统蓄能罐参数配置分析[J]. 中国农村水利水电, 2024, (8): 222-227.
引用本文: 鲍文龙, 冯陈, 蔡文方, 汪春, 杨丹, 汤络翔. 压缩空气抽水蓄能系统蓄能罐参数配置分析[J]. 中国农村水利水电, 2024, (8): 222-227.
BAO Wen-long, FENG Chen, CAI Wen-fang, WANG Chun, YANG Dan, TANG Luo-xiang. Parameter Configuration Analysis of Storage Tank in Pumped Hydro Combined with Compressed Air Energy Storage System[J]. China Rural Water and Hydropower, 2024, (8): 222-227.
Citation: BAO Wen-long, FENG Chen, CAI Wen-fang, WANG Chun, YANG Dan, TANG Luo-xiang. Parameter Configuration Analysis of Storage Tank in Pumped Hydro Combined with Compressed Air Energy Storage System[J]. China Rural Water and Hydropower, 2024, (8): 222-227.

压缩空气抽水蓄能系统蓄能罐参数配置分析

基金项目: 

国网浙江省电力有限公司科技项目资助(新型分布式压缩空气抽水蓄能储能系统研究5211DS23000K)

详细信息
    作者简介:

    鲍文龙(1989-),男,高级工程师,硕士,主要研究方向为压缩空气抽水蓄能系统建模与仿真。E-mail:787396373@qq.com

    通讯作者:

    冯陈(1992-),男,讲师,博士,主要研究方向为压缩空气抽水蓄能系统协调控制。E-mail:windycity@hhu.edu.cn

  • 中图分类号: TV743

Parameter Configuration Analysis of Storage Tank in Pumped Hydro Combined with Compressed Air Energy Storage System

  • 摘要: 为获得压缩空气抽水蓄能(pumped hydro combined with compressed air energy storage system,PHCA)系统蓄能罐子系统在实际运行中具有较高能量密度与蓄能效率的参数配置,对系统中蓄能罐子系统进行热力学建模,分析了其压力配置、换热条件、流量配置对于蓄能罐子系统效率和能量密度的影响规律,结果表明:对于额定存储压力,总有与之对应的一个最优初始压力可以使得能量密度达到最大值,存储压力与最优初始压力的比值在2~3之间,对应压力配置的蓄能效率稳定在92%~93%之间;传热系数和存储时间在一定配置范围内会使系统陷入低效率区,在蓄能罐的设计中,应当评估出其换热能力避免低效率区;运行过程中,存储时间对于蓄能效率的影响较大,选择合适的水泵水轮机工作流量可以保证效率,在短存储时间时,采用的配置方法为高压缩、高膨胀流量,当存储时间变长后,应当同时减少压缩和膨胀流量。研究结果可为该系统的设计与运行提供理论依据。
    Abstract: In order to obtain the parameter configuration of storage tank in pumped hydro combined with compressed air energy storage system(PHCA) with high energy density and energy storage efficiency in actual operation, in this paper, the thermodynamic modeling of the energy storage tank system in the system was carried out, and the influence laws of its pressure configuration, heat exchange conditions and flow configuration on the efficiency and energy density of the energy storage tank system were analyzed. The results showed that: For the rated storage pressure, there is always an optimal initial pressure corresponding to it, which can make the energy density reach the maximum.The ratio between the optimal initial pressure and the storage pressure is between 2 and 3, and the storage efficiency of the corresponding pressure configuration is stable between 92% and 93%. When the heat transfer coefficient and storage time are in a certain configuration range, the system will fall into the low efficiency zone. In the design of storage tank, the heat transfer capacity should be evaluated to avoid the low efficiency zone. During operation, the storage time has a great impact on the energy storage efficiency, and choosing the suitable working flow of pump turbine can ensure efficiency. When the storage time is short, the configuration method adopted is high compression flow and high expansion flow. When the storage time becomes longer, the compression and expansion flow should be reduced at the same time. The research results can provide a theoretical basis for the design and operation of the system.
  • [1] 吴优.气候变化背景下江苏低碳经济发展模式与路径研究[D].南京:南京信息工程大学,2015.(WU Y. Jiangsu development mode and paths of low carbon economy under climate change[D]. Nanjing:Nanjing University of Information Science and Technology, 2015.)
    [2] 李艳生.储能参与含风电的电力系统调峰调频研究[D].乌鲁木齐:新疆大学,2020.(LI Y S. Research on energy storage participating in peak and frequency regulation of power system containing wind power[D]. Urumqi:Xinjiang University, 2020.)
    [3] 刘世林,文劲宇,孙海顺,等.风电并网中的储能技术研究进展[J].电力系统保护与控制,2013,41(23):145-153.(LIU S L,WEN J Y, SUN H S, et al. Progress on applications of energy storage technology in wind power integrated to the grid[J]. Power System Protection and Control, 2013(23):145-153.)
    [4] 刘军,李凌阳,吴梦凯,等.分布式抽水蓄能电站与新能源发电联合参与现货市场的两阶段优化运行策略[J].浙江电力,2023, 42(2):50-58.(LIU J, LI L Y, WU M K, et al. A two-stage optimal operation strategy of distributed pumped storage power plant and new energy power generation jointly participating in spot market[J]. Zhejiang Electric Power, 2023,42(2):50-58.)
    [5] 纪律,陈海生,张新敬,等.压缩空气储能技术研发现状及应用前景[J].高科技与产业化,2018(4):52-58.(JI L, CHEN H S,ZHANG X J, et al. Research and development status and application prospects of compressed air energy storage technology[J]. HighTechnology&Commercialization, 2018(4):52-58.)
    [6] 李广阔,王国华,薛小代,等.金坛盐穴压缩空气储能电站调相模式设计与分析[J].电力系统自动化,2021, 45(19):91-99.(LI G K, WANG G H, XUE X D, et al. Design and analysis of condenser mode for jintan salt cavern compressed air energy storage plant of china[J]. Automation of Electric Power Systems, 2021,45(19):91-99.)
    [7]

    DIEZMARTÍNEZ C V. Clean energy transition in Mexico:Policy recommendations for the deployment of energy storage technologies[J].Renewable and Sustainable Energy Reviews, 2021,135:110 407.

    [8] 王富强,王汉斌,武明鑫,等.压缩空气储能技术与发展[J].水力发电,2022,48(11):10-15.(WANG F Q, WANG H B, WU M X, et al. Compressed air energy storage technology and development[J]. Water Power, 2022,48(11):10-15.)
    [9]

    ODUKOMAIYA A, ABU-HEIBA A, GRAHAM S, et al. Experimental and analytical evaluation of a hydro-pneumatic compressed-air Ground-Level Integrated Diverse Energy Storage(GLIDES)system[J]. Applied Energy, 2018,221:75-85.

    [10]

    WANG H, WANG L, WANG X, et al. A novel pumped hydro combined with compressed air energy storage system[J]. Energies,2013,6(3):1 554-1 567.

    [11] 李丞宸,贺新,陶飞跃,等.一种压缩空气与抽水蓄能耦合的新型储能系统及热力学分析[J].西安交通大学学报,2022,56(4):40-49+71.(LI C C, HE X, TAO F Y, et al. A new energy storage system coupled with compressed air and pumped-hydro energy storage and related thermodynamic analysis[J]. Journal of Xi'An Jiaotong University, 2022,56(4):40-49+71.)
    [12] 张学清,海晓涛,高轩,等.基于协同博弈法的抽水蓄能电站建设成本优化研究[J].水力发电,2023,49(7):78-81+87.(ZHANG X Q, HAI X T, GAO X, et al. Research on construction cost optimization of pumped-storage power station based on cooperative game method[J]. Water Power, 2023,49(7):78-81+87.)
    [13] 严凯,侯付彬,刘明明,等.恒压型抽水压缩空气储能系统的热力学及经济学多目标优化[J].工程热物理学报,2020,41(1):135-140.(YAN K, HOU F B, LIU M M, et al. Multi-objective optimization on thermodynamics and economics of a constant-pressure pumped hydro combined with compressed air energy storage system[J]. Journal of Engineering Thermophysics, 2020,41(1):135-140.)
    [14]

    MOZAYENI H, WANG X, NEGNEVITSKY M. Thermodynamic and exergy analysis of a combined pumped hydro and compressed air energy storage system[J]. Sustainable Cities and Society, 2019,48:101 527.

    [15] 姚尔人,席光,王焕然,等.一种新型压缩空气与抽水复合储能系统的热力学分析[J].西安交通大学学报,2018,52(3):12-18.(YAO E R, XI G, WANG H R, et al. Thermodynamic analysis on a novel compressed-air based pumped hydro energy storage system[J]. Journal of Xi'an Jiaotong University, 2018,52(3):12-18.)
    [16]

    KIM Y, SHIN D, FAVRAT D. Operating characteristics of constant-pressure compressed air energy storage(CAES)system combined with pumped hydro storage based on energy and exergy analysis. Energy, 2011,36(10):6 220-6 233.

    [17] 沈维道.工程热力学[M].北京:高等教育出版社,2007.(SHEN W D. Engineering thermodynamics[M]. Beijing:Higher Education Press, 2007.)
    [18] 李雪梅,杨科,张远. AA-CAES系统储气室热力学特性研究[J].工程热物理学报,2015,36(3):513-516.(LI X M, YANG K, ZHANG Y. Thermodynamic analysis of storage cavern in advanced adiabatic compressed air energy storage system[J]. Journal of Engineering Thermophysics, 2015,36(3):513-516.)
    [19]

    POURMOVAHED A, OTIS D R. An experimental thermal time constant correlation for hydraulic accumulators[J/OL]. Jounal of Dynamic Systems, Measurement, and Control, 1990,112(1):116-21. http://dx.doi.org/ 10.1115/1.2894128. DOI: 10.1115/1.2894128.

    [20]

    KADOYA K, MATSUNAGA N, NAGASHIMA A. Viscosity and thermal conductivity of dry air in the gaseous phase[J]. Journal of Physical and Chemical Reference Data, 1985,14(4):947-970.

计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-05

目录

    /

    返回文章
    返回