Abstract:
The fairness of water use is one of the key factors to be considered in the balanced allocation of water resources. Aiming at the problem that the fairness of water use in the basin is not considered enough in the different industries, an evaluation method based on multi-factor Gini coefficient in different industries is proposed. The Gini coefficient between industry water consumption and industry scale is used to represent industry water fairness. The comprehensive Gini coefficient of water use in the basin is calculated based on the proportion of water consumption in each industry to represent the fairness of water use in the basin. Taking the Yellow River Basin as an example, this paper calculates the Gini coefficient and analyzes the variation of the fairness of water use of different industries in nine provinces of the Yellow River Basin from 1980 to 2020. Take 1995 and 2005 before and after the integrated water regulation of the Yellow River as examples, the impact of integrated water regulation on the fairness of water use in the basin was compared and analyzed. The results show that over the past 40 years, the fairness of water use in domestic, industry, urban public, and agriculture were “highly fair”, “relatively fair”, from “highly fair” to “relatively fair”, and from “relatively fair” to “highly fair”, respectively. The proportion of agricultural water use exceeds 70%, and the Gini coefficient of watershed water use is mainly affected by agricultural water use, the comprehensive Gini coefficient of economic and social water use in the basin is 0.16~0.25 from 1980 to 2020, which is in a downward trend, indicating that the fairness of economic and social water use in the basin has gradually improved, changing from “relatively fairness” to “highly fairness”. The fairness of water use for domestic and agriculture is gradually improved, and the fairness of public water use in industry, especially in urban areas, has decreased significantly. This is mainly because the differences in water use quotas for domestic and agriculture between 9 provinces in the basin have decreased, while the differences in water use quotas for the tertiary industry have increased. The integrated water regulation of the Yellow River has effectively controlled the total water use in the basin, promoted the improvement of agricultural water use efficiency and the reduction of water quota differences between provinces, and improved the fairness of agricultural water use and water use in the entire basin.