Abstract:
In order to dynamically analyze the impact of future land use change on the non-point source pollution load in the watershed,this study couples the PLUS land use prediction model with the SWAT non-point source pollution load model,so as to reveal the distribution of non-point source pollution in the watershed under different land use change scenarios.By taking the Dongjiang Lake Basin as the research area,this paper simulates and predicts the temporal and spatial evolution of non-point source pollution under different land use patterns in the historical series of the study area and in the following 2035 by building the SWAT non-point source pollution model and the PLUS land use model.The results show that the SWAT model has good applicability to the Dongjiang Lake Basin.The Nash–Sutcliffe efficiency index of the river runoff in regular and verification periods are 0.80 and 0.71. Meanwhile,the ammonia nitrogen and total phosphorus rates are higher than 0.5 in both periods.The temporal and spatial evolution characteristics,as well as changing trends,of non-point source pollution in the Dongjiang Lake Basin are studied by using long series simulation results.Non-point source pollution in the Dongjiang Lake Basin is affected by natural processes such as precipitation and runoff and land use patterns. From a time perspective,the pollution output load is concentrated during the high-water period with heavy precipitation. The inter-regional change reveals a trend of non-point source pollution first increasing and then decreasing; from the perspective of spatial scale,higher loads of ammonia nitrogen and total phosphorus are concentrated in the northwestern and central sub-basins with larger runoff and scattered farmland. The impact of different types of land use on non-point source pollution is studied in conjunction with the distribution pattern of land use and non-point source pollution.The contribution degree of total phosphorus load is cultivated land > construction land > grassland > forest land >unused. The land use pattern in 2035 is set by using the PLUS land use model under the historical trend scenario and territorial spatial planning, and the simulation and analysis of the response to non-point source pollution are completed on this basis.Under two different land use pattern scenarios,the territorial spatial planning scenario reduces ammonia nitrogen by 2.12 t and total phosphorus by 54.6 t compared with the historical trend scenario.The former scenario is more beneficial to control the non-point source pollution loads in the Dongjiang Lake Basin.The increase in pollution load is caused by the pollution of farmland, the rapid expansion of construction land and the reduction of forest land,and the restricted conversion of forest land and cultivated land plays an important role in reducing the pollution load of the watershed.