Abstract:
The Three Gorges Hydropower Station has 34 units with a total installed capacity of 22 500 MW. It is a key power source for the backbone power grid of State Grid Corporation of China’s “West-to-East Power Transmission” project and “North-South Interconnection” project, supporting the safe and stable operation of the grid. However, the annual maintenance work at the Three Gorges Hydropower Station is complex and highly uncertain due to the large number of equipment, diverse unit models, and varied demands for equipment technological upgrades. Additionally, the workload for manual operations is significant. To address these challenges, a maintenance planning platform has been developed based on the SpringBoot microservices architecture. The platform includes the Three Gorges Hydropower Station Operation Scheduling and Optimal Maintenance Arrangement System. It provides a hierarchical operational service framework for decision-makers, managers, implementers, and operators at the power plant. This platform enables comprehensive digital management and control of the yearly maintenance planning, execution, feedback, and adjustments for the equipment at the Three Gorges Hydropower Plant. Furthermore, considering different maintenance requirements and prioritizing safety and stability during the maintenance process, multiple maintenance plan options have been proposed and optimized. Currently, this platform effectively serves the routine maintenance scheduling work at the Three Gorges Hydropower Station.