高级检索+

基于CNN-BiGRU的水电机组振动趋势预测

Vibration Trend Prediction of Hydropower Units Based on CNN-BiGRU

  • 摘要: 水电机组振动信号是健康状态评价和劣化预警的重要内容,准确预测机组振动变化趋势可以提高机组运行的安全性和可靠性。针对目前单一模型难以获得最优预测结果的问题,提出了一种CNN-BiGRU组合模型振动预测方法。首先,利用卷积神经网络(CNN)提取数据局部特征,然后,将其与双向门控循环单元(BiGRU)网络并行,构建出CNN-BiGRU组合预测模型。该模型旨在通过将CNN的自适应提取局部信息能力与BiGRU的时间系列预测优势相结合,提高预测精度和通用性。最后,以国内某水电站机组轴向振动峰峰值进行预测研究,结果表明,所提模型可有效预测机组振动变化趋势,为水电机组振动预测提供一种新思路。

     

    Abstract: Vibration signal of hydropower unit is an important content of health state evaluation and deterioration early warning. An accurate prediction of unit vibration change trend can improve the safety and reliability of unit operation. In view of the problem that single model is difficult to obtain the optimal prediction results,a CNN-BiGRU combination model vibration prediction method is proposed. Firstly,the convolutional neural network(CNN)is used to extract the local features of the data,and then the CNN-BiGRU combined prediction model is constructed in parallel with the bidirectional gated cyclic unit(BiGRU)network. The model aims to improve the prediction accuracy and universality by combining CNN’s ability to adaptively extract local information with BiGRU’s time series prediction advantages. Finally,the prediction of axial vibration peak value of a domestic hydropower station unit is studied. The experimental results show that the proposed combined model can effectively predict the variation trend of unit vibration,and provide a new idea for vibration prediction of hydropower units.

     

/

返回文章
返回