Citation: | WANG Xuan, YAO Yuan, TAO Cong-cong, CHU Dong-dong, XU Bo. Correlation Analysis of Dam Deformation Monitoring Data for Concrete Gravity Dam[J]. China Rural Water and Hydropower, 2024, (8): 180-187,193. |
[1] |
赵志仁,徐锐.国内外大坝安全监测技术发展现状与展望[J].水电自动化与大坝监测,2010,34(5):52-57.(ZHAO R Z, XU R.Current status and prospect of the development of dam safety monitoring technology at home and abroad[J]. Hydroelectric Automation and Dam Monitoring, 2010,34(5):52-57.)
|
[2] |
LI B, YANG J, HU D X. Dam monitoring data analysis methods:A literature review[J]. Structural Control&Health Monitoring, 2020,27(3):1-14.
|
[3] |
SCHOBER P, BOER C, SCHWARTE L A. Correlation coefficients:appropriate use and interpretation[J]. Anesthesia and Analgesia,2018,126(5):1 763-1 768.
|
[4] |
RESHEF D N, RESHEF Y A, FINUCANE H K, et al. Detecting novel associations in large data sets[J]. Science, 2011,334(6 062):1 518-1 524.
|
[5] |
ZHANG W Y, WEI Z W, WANG B H, et al. Measuring mixing patterns in complex networks by Spearman rank correlation coefficient[J]. Physica A-Statistical Mechanics and Its Applications, 2016,451(11):440-450.
|
[6] |
TAN Q H, JIANG H J, DING Y M. Model selection method based on maximal information coefficient of residuals[J]. Acta Mathematica Scientia, 2014,34(2):579-592.
|
[7] |
LIU H M, RAO N, YANG D, et al. A novel method for identifying SNP disease association based on maximal information coefficient[J].Genetics and Molecular Research, 2014,13(4):10 863-10 877.
|
[8] |
SUN G L, LI J B, DAI J, et al. Feature selection for IoT based on maximal information coefficient[J]. Future Generation Computer Systems-The International Journal of Escience, 2018,89(12):606-616.
|
[9] |
WEN T, DONG D Y, CHEN Q Y, et al. Maximal information coefficient-based two-stage feature selection method for railway condition monitoring[J]. IEEE Transactions on Intelligent Transportation Systems, 2019,20(7):2 681-2 690.
|
[10] |
LIN G C, LIN A J, GU D L. Using support vector regression and Knearest neighbors for short-term traffic flow prediction based on maximal information coefficient[J]. Information Sciences, 2022,608(27):517-531.
|
[11] |
任佳,孙思宇,鲍克.基于最大信息系数和深度残差图卷积的工业过程故障诊断方法[J].高校化学工程学报,2023,37(1):111-119.(REN J, SUN S Y, BAO K. An industrial process fault diagnosis method based on maximum information coefficient and deep residual map convolution[J]. Journal of Chemical Engineering in Higher Education, 2023,37(1):111-119.)
|
[12] |
MILILLO P, PERISSIN D, SALZER J, et al. Monitoring dam structural health from space:insights from novel InSAR techniques and multi-parametric modeling applied to the Pertusillo dam Basilicata,Italy[J]. International Journal of Applied Earth Observation and Geoinformation, 2016,52(9):221-229.
|
[13] |
ZHANG J h, WANG J, CHAI L S. Factors influencing hysteresis characteristics of concrete dam deformation[J]. Water Science and Engineering, 2017,10(2):166-174.
|
[14] |
WEI B W, GU M H, LI H K, et al. Modeling method for predicting seepage of RCC dams considering time-varying and lag effect[J].Structural Control&Health Monitoring, 2018,25(2):1-14.
|
[15] |
WANG S W, XU Y L, GU C S, et al. Hysteretic effect considered monitoring model for interpreting abnormal deformation behavior of arch dams:a case study[J]. Structural Control and Health Monitoring, 2019,26(10):1-20.
|
[16] |
KANG F, LI J J, DAI J H. Prediction of long-term temperature effect in structural health monitoring of concrete dams using support vector machines with Jaya optimizer and salp swarm algorithms[J].Advances In Engineering Software, 2019,131(5):60-76.
|
[17] |
REN Q B, LI M C, SONG L G, et al. An optimized combination prediction model for concrete dam deformation considering quantitative evaluation and hysteresis correction[J]. Advanced Engineering Informatics, 2020,46(4):1-16.
|
[18] |
DAI W, LIU B, MENG X, et al. Spatio-temporal modelling of dam deformation using independent component analysis[J]. Survey Review, 2014,46(339):437-443.
|
[19] |
CHEN B, HU T Y, HUANG Z S, et al. A spatio-temporal clustering and diagnosis method for concrete arch dams using deformation monitoring data[J]. Structural Health Monitoring-An International Journal, 2019,18(5-6):1 355-1 371.
|
[20] |
陈端,曹阳,夏辉,等.基于熵权法和G1法的大坝监测指标权重融合[J].水电能源科学,2012,30(6):92-94.(CHEN D,CAO Y, XIA H, et al. Fusion of dam monitoring indicator weights based on entropy weighting and G1 method[J]. Hydroelectric Energy Science, 2012,30(6):92-94.)
|
[21] |
GU C S, FU X, SHAO C F, et al. Application of spatio-temporal hybrid model of deformation in safety monitoring of high arch dams:a case study[J]. International Journal of Environmental Research and Public Health, 2020,17(1):1-25.
|
[22] |
WANG J Y, GU H, CHEN B, et al. A spatio-temporal dam deformation zoning method considering non-uniform distribution of monitoring information[J]. IEEE Access, 2021,9(1):117 615-117 628.
|
[23] |
LIU Y T, ZHENG D J, GEORGAKIS C, et al. Deformation analysis of an ultra-high arch dam under different water level conditions based on optimized dynamic panel clustering[J]. Applied SciencesBasel, 2022,12(1):1-18.
|
[24] |
XU G Y, LU Y W, JING Z X, et al. IEALL:dam deformation prediction model based on combination model method[J]. Applied Sciences-Basel, 2023,13(8):1-28.
|