高级检索+

农机驾驶人员疲劳驾驶行为检测研究

Study on fatigue driving behavior of agricultural machinery drivers

  • 摘要: 在播种与收获季节,农机驾驶人员经常不分昼夜不顾疲劳地作业,极其容易发生安全事故。目前对疲劳驾驶的检测方法主要分为接触式(例如直接采集农机驾驶人员身体特征信息)与非接触式(例如拍摄农机驾驶人员面部视频信息检测疲劳状态)两种。针对两种方式中存在使用不方便和检测不准确问题,提出一种使用Haar-like特征加Adaboost算法训练出多个弱分类器组合成的强分类集合检测人脸方法,基于卷积神经网络模型将农机驾驶人员脸部分为闭眼、正常及非人脸的概率值,使用PERCLOS方法检测疲劳状态。嵌入式平台仿真实验表明,本文采用的Adaboost+CNN+PERCLOS方法准确率可达95.1%。

     

    Abstract: During the sowing and harvesting season, the agricultural machinery drivers often work day and night regardless of fatigue, making them extremely prone to safety accidents. At present, the detection methods for fatigue driving are mainly divided into two types: contact-type(collecting agricultural machinery driver body characteristic information) and non-contact type(photographing agricultural machinery driver face to detect fatigue state). Aiming at the problems of inconvenience and inaccuracy of detection in the two methods, this paper proposes a face detection method using Haar-like feature and AdaBoost algorithm to train multiple weak classifiers. Based on the convolution neural network model, the face of the agricultural machinery driver is divided into the probability value of closed eyes, normal, and non-face. Fatigue can be detected by the PERCLOS method. The simulation results on the embedded platform show that the accuracy of the AdaBoost + CNN + PERCLOS method can reach 95.1%.

     

/

返回文章
返回