Abstract:
A self-propelled garlic planting and fertilizing integrated machine was designed, and preliminary field experiments were conducted. The combination of the garlic picking chains and spoons realized garlic picking and transportation. The outer-fluted fertilizer apparatus was used to supply fertilizers. Double-wing ditchers were used to excavate ditches. Based on the requirements of integration of garlic drilling and fertilizing, the position, structure, and parameters of each assembly were determined to reduce the size and improve the compactness of the machine, and realize an effective distribution of the transmission chain, enabling adjustable plating spacing and thorough self-propelled function. The lifting mechanism was designed with a parallelogram structure, allowing for automatic lifting and lowering of the ditcher. Based on numerical simulation through ANSYS Workbench, the frame was optimized by evaluating the statics, modal, and frequency response to achieve performance improvements and weight reduction. Field experiment results indicated that increasing the movement speed and reducing the planting distance led to a significant increase in the missing planting rate and a decrease in reseeding rate, resulting in a decrease in overall drilling qualified rate. However, when the planting distance was set at 120 mm for Pizhou garlic and the machine’s speed was 15 m/min, the average qualified rate of drilling was 86.1%, the average missing rate was 8.7%, and the average reseeding rate was 5.2%, meeting the required technical standards. Additionally, the average fertilization depth was 6.22 cm with a stability coefficient of 96.40% when the preset fertilizer depth was 6.2 cm, indicating satisfactory fertilization performance. Therefore, the machine can effectively realize mechanized drilling of garlic with reliable fertilization efficacy.