Abstract:
Accurate identification and estimation of tractor running state is an important basis for its safe driving and smooth control. Aiming at the problems of complex estimation and low accuracy of state parameters of large tractors, a three-degree-of-freedom simulation model of large tractors was established, including Dugoff tire model. The state parameter estimation algorithm of large tractor based on volume Kalman filter theory was proposed. Then, the driving parameters of large tractors were estimated, including longitudinal speed, lateral speed, sideslip angle of center of mass and yaw rate. Finally, the Matlab software was used to simulate and verify, and the simulated state parameters were compared with the values estimated by the algorithm under the condition that the adhesion coefficient of the double-shift line surface was 0.8 and 0.6. The results showed that the errors between the simulated values of yaw rate, sideslip angle of center of mass and longitudinal speed of tractor and the real values were 0.1, 0.2 and 0.4, respectively, which verified the feasibility and accuracy of estimating the state parameters of large tractors based on the volumetric Kalman filter algorithm, and provided reference for the stability control of large tractors.