Research on image recognition algorithm of citrus picking robot
-
摘要: 柑橘作为我国重要的水果对增加我国果农收入有重要的作用,因此柑橘的自动采摘机器人已经成为当下研究的热点。针对柑橘采摘机器人核心的机器视觉部分进行柑橘图像识别算法的设计,选取HSV颜色空间中的S分量值作为柑橘识别的颜色特征,进行图像增强、去噪和分割预处理操作。综合比较Canny、Sobel、LOG三种边缘算子下的Hough变换,最终确定柑橘图像识别的最优方案。试验结果表明:基于Sobel边缘检测算子下的Hough变换的柑橘识别算法最优,对单个无枝叶遮挡柑橘识别成功率为97%,单个有枝叶遮挡柑橘识别成功率为90%,多个柑橘果实重叠识别成功率为80.6%,在一定程度上能够有效保证柑橘采摘机器人对柑橘果实的成功识别。Abstract: Citrus, as an important fruit in our country, plays an important role in increasing the income of our fruit farmers. Therefore, automatic robots of citrus picking have become a hot topic in recent research. A citrus image recognition algorithm was designed for the core machine vision part of the citrus picking robot. The S-component value in HSV color space was selected as the color feature for citrus recognition to perform image enhancement, denoising and segmentation pre-processing operations. By comprehensively comparing the Hough transform under the three edge operators Canny, Sobel and LOG, we finally determined the optimal solution for citrus image recognition. The experimental results show that the Hough transform based on the Sobel edge detection operator is the best, with a success rate of 97% for a single citrus without branch and leaf shading, 90% for a single citrus with branch and leaf shading, and 80.6% for multiple overlapping citrus.This algorithm can effectively guarantee the probability of successful identification of citrus to a certain extent.
-
-
[1] 温晗秋子,郑永强,刘杨.柑橘大数据研究与应用[J].农业大数据学报,2021,3(1):33-44. [2] 奎国秀,祁春节.我国柑橘产业生产贸易的变化及机遇与挑战[J].中国果树,2021(6):93-97. Kui Guoxiu,Qi Chunjie.Changes,opportunities and challenges of citrus production and trade in China [J].China Fruits,2021(6):93-97.
[3] 余佳佳,饶洪辉,罗式挺,等.南丰蜜桔机械采摘现状和发展趋势[J].中国农机化学报,2017,38(2):135-138,158. Yu Jiajia,Rao Honghui,Luo Shiting,et al.Status and development trend of machinery picking Nanfeng citrus [J].Journal of Chinese Agricultural Mechanization,2017,38(2):135-138,158.
[4] 李玉萍,叶露,梁伟红,等.我国柑橘类地理标志产品发展现状与路径[J].中国果树,2021(12):93-98,108. Li Yuping,Ye Lu,Liang Weihong,et al.Development status and path of citrus geographical indication products in China [J].China Fruits,2021(12):93-98,108.
[5] 中华人民共和国国家统计局.中国年鉴[M].北京:中国统计出版,2021. [6] 张潞.自然环境下的柑橘自动采摘关键技术研究[D].北京:北方工业大学,2020. [7] 杨长辉,刘艳平,王毅,等.自然环境下柑橘采摘机器人识别定位系统研究[J].农业机械学报,2019,50(12):14-22,72. Yang Changhui,Liu Yanping,Wang Yi,et al.Research and experiment on recognition and location system for citrus picking robot in natural environment [J].Transactions of the Chinese Society for Agricultural Machinery,2019,50(12):14-22,72.
[8] Lu J,Sang N.Detecting citrus fruits and occlusion recovery under natural illumination condition [J].Computers and Electronics in Agriculture,2015,110:121-130.
[9] Kurthmus F,Lee W S,Vardar A.Green citrus detection using ‘eigenfruit’,color and circular Gabor texture features under natural outdoor conditions [J].Computers and Electronics in Agriculture,2011,78(2):140-149.
[10] 赵德安,沈甜,陈玉,等.苹果采摘机器人快速跟踪识别重叠果实[J].农业工程学报,2015,31(2):22-28. Zhao De'an,Shen Tian,Chen Yu,et al.Fast tracking and recognition of overlapping fruit for apple harvesting robot [J].Transactions of the Chinese Society of Agricultural Engineering,2015,31(2):22-28.
[11] 刘丽娟,窦佩佩,王慧.自然环境下重叠与遮挡苹果图像识别方法研究[J].中国农机化学报,2021,42(6):174-181. Liu Lijuan,Dou Peipei,Wang Hui.Image recognition algorithm research of overlapped apple fruits in the natural environment [J].Journal of Chinese Agricultural Mechanization,2021,42(6):174-181.
[12] 李杨.基于双目视觉的柑橘采摘机器人目标识别及定位技术研究[D].重庆:重庆理工大学,2017. [13] 周洪刚,康敏.基于机器视觉的成熟柑橘自动识别研究[J].江苏农业科学,2013,41(6):380-381. [14] 顾思妍.机器视觉的直线检测技术及应用研究[D].广州:广东工业大学,2011. [15] 张洪超,侯德文.一种基于多阈值迭代方法的图像分割算法[J].山东师范大学学报(自然科学版),2016,31(2):49-52,56. Zhang Hongchao,Hou Dewen.An image segmentation algorithm based on iterative multiple threshold [J].Journal of Shandong Normal University (Natural Science),2016,31(2):49-52,56.
[16] 张凯兵,赵珮含.基于HOG特征和SVM的日常运动行为识别[J].湖北工程学院学报,2018,38(6):55-61. Zhang Kaibing,Zhao Peihan.Daily sports action recognition based on HOG feature and SVM [J].Journal of Hubei Engineering University,2018,38(6):55-61.
[17] 林耀海,赵洪璐,杨泽灿,等.结合深度学习与Hough变换的等长原木材积检测系统[J].林业工程学报,2021,6(1):136-142. Lin Yaohai,Zhao Honglu,Yang Zecan,et al.An equal length log volume inspection system using deep-learning and Hough transformation [J].Journal of Forestry Engineering,2021,6(1):136-142.
[18] 段志达,魏利胜,刘小珲,等.基于Hough变换圆检测和边缘模板匹配的轴承缺陷检测与定位[J].安徽工程大学学报,2020,35(4):60-68. Duan Zhida,Wei Lisheng,Liu Xiaohui,et al.Bearing defect detection and location based on Hough transform circle detection and edge template matching [J].Journal of Anhui Polytechnic University,2020,35(4):60-68.
[19] 龚昕,张楠.基于Hough变换的圆检测算法的改进[J].信息技术,2020,44(6):89-93,98. Gong Xin,Zhang Nan.Improvement of circle detection algorithm based on Hough transform [J].Information Technology,2020,44(6):89-93,98.
-
期刊类型引用(6)
1. 陈咏毅,魏玄进. 基于OpenCV模式的自动柑橘采摘器设计. 机械管理开发. 2025(03): 89-91 . 百度学术
2. 伍慧婷,周剑雄,张延卓,樊海红,陈景贤. 图像识别技术在荔枝外观检测中的应用. 集成电路应用. 2025(03): 406-408 . 百度学术
3. 程娟,李超,张玉浩,许宁,薛丽,何青海. 设施种植机械装备发展现状与对策. 农业装备与车辆工程. 2024(01): 23-28 . 百度学术
4. 谢宇飞. 计算机视觉技术在农业采摘设备中的应用. 现代农业科技. 2024(16): 156-159 . 百度学术
5. 李丽,梁继元,张云峰,张官明,淳长品. 基于改进YOLO v5的复杂环境下柑橘目标精准检测与定位方法. 农业机械学报. 2024(08): 280-290 . 百度学术
6. 姚东良,高柱,王小玲,毛积鹏,陈璐,朱玉麟,梁贝贝. 我国南方果园农业机械化发展趋势及农艺技术措施. 江西科学. 2024(05): 935-941 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 2
- HTML全文浏览量: 2
- PDF下载量: 0
- 被引次数: 6