DOU Wen-hao, SUN San-min, XU Peng-xiang. Design and experiment of jujube intelligent irrigation system based on Stacking integrated learning[J]. Journal of Chinese Agricultural Mechanization, 2024, 45(6): 270-276. DOI: 10.13733/j.jcam.issn.2095-5553.2024.06.040
Citation: DOU Wen-hao, SUN San-min, XU Peng-xiang. Design and experiment of jujube intelligent irrigation system based on Stacking integrated learning[J]. Journal of Chinese Agricultural Mechanization, 2024, 45(6): 270-276. DOI: 10.13733/j.jcam.issn.2095-5553.2024.06.040

Design and experiment of jujube intelligent irrigation system based on Stacking integrated learning

More Information
  • Received Date: October 07, 2022
  • In the south of Xinjiang, the rainfall is low, the climate is dry, agricultural water is scarce, and water conservation is particularly important. An intelligent irrigation system is designed to solve this problem. The system uses Alibaba Cloud server as the upper computer and raspberry pie as the lower computer, and sets up corresponding operation pages. In this paper, according to the meteorological data required in Penman-Monteith formula, the water demand of the past seven days and the meteorological data of the previous day as the input vector, and the crop water demand as the output vector, the Stacking integrated learning prediction model based on random forest, BP neural network and ridge regression is constructed. The results show that the fitting coefficient R~2 of Stacking integrated learning prediction model is 0.973, and the three types of errors of MAE, RMSE and MAPE are smaller. The prediction effect of Stacking integrated learning prediction model is stronger. In the irrigation experiment, the automatic irrigation decision is correct, and the system operates stably, which provides ideas for improving the utilization of water resources in agriculture in Xinjiang.
  • [1]
    刘建军.南疆地区水资源保障问题和对策分析[J].水资源开发与管理,2022,8(8):8-11,5.

    Liu Jianjun.Problems and countermeasures of water resources guarantee in Southern Xinjiang [J].Water Resources Development and Management,2022,8(8):8-11,5.
    [2]
    杨文忠.农业节水灌溉技术现状与发展趋势探讨[J].农业科技与信息,2021(4):92,97.
    [3]
    潘晓燕.物联网技术的农业智能灌溉系统设计与应用研究[J].科学技术创新,2021(26):176-177.
    [4]
    陈艳丽,谢芳.基于ZigBee的农田智能节水灌溉系统的设计[J].中国农机化学报,2017,38(2):81-83,129.

    Chen Yanli,Xie Fang.Design of intelligent water-saving farmland irrigation system based on ZigBee [J].Journal of Chinese Agricultural Mechanization,2017,38(2):81-83,129.
    [5]
    程章翔,辛元芳,姚勇,等.基于NB-IoT的智能灌溉系统设计[J].集成电路应用,2021,38(6):44-45.
    [6]
    蓝宇,黄中舟,朱彦博,等.基于STM32和树莓派智能灌溉系统的设计与实现[J].物联网技术,2021,11(7):114-117.
    [7]
    张吉圭.基于STC15W单片机农田智能灌溉无线监控系统的实现[J].智慧农业导刊,2021,1(5):33-35.
    [8]
    赵苏徽,陈晓.基于树莓派和云平台的智能灌溉系统[J].计算机系统应用,2022,31(4):123-129.

    Zhao Suhui,Chen Xiao.Intelligent irrigation system based on Raspberry Pi and cloud platform [J].Computer System & Application,2022,31(4):123-129.
    [9]
    谭燕,秦风元.基于Raspberry Pi的室内智能灌溉系统设计与研究[J].节水灌溉,2019(7):105-108.

    Tan Yan,Qin Fengyuan.Design and research of indoor intelligent irrigation system based on Raspberry Pi [J].Water Saving Irrigation,2019(7):105-108.
    [10]
    许铭鋆.基于Raspberry Pi的智能灌溉系统设计及其研究[D].广州:广州大学,2019.
    [11]
    刘振奎.基于模糊控制的节水智能灌溉系统设计[J].安徽农学通报,2021,27(23):138-140.

    Liu Zhenkui.Design of water-saving intelligent irrigation system based on fuzzy control [J].Anhui Agricultural Science Bulletin,2021,27(23):138-140.
    [12]
    尹起.机器学习预测参考作物蒸散量在智能灌溉系统中的应用研究[D].乌鲁木齐:新疆大学,2021.
    [13]
    谢佩军,张育斌.阻尼累加离散灰色预测的Smith预估智能灌溉系统[J].中国农机化学报,2022,43(8):158-165.

    Xie Peijun,Zhang Yubin.Smith predictive intelligent irrigation system based on damping accumulated discrete grey prediction [J].Journal of Chinese Agricultural Mechanization,2022,43(8):158-165.
    [14]
    Badi H,Hamza A,Hasan S.New method for optimization of static hand gesture recognition [J].IEEE,2017:542-544.
    [15]
    吕孙云,许银山,熊莹,等.组合预测方法在需水预测中的应用[J].武汉大学学报(工学版),2011,44(5):565-570.

    Lü Sunyun,Xu Yinshan,Xiong Ying,et al.Combined forecasting method for forecasting water demand [J].Engineering Journal of Wuhan University,2011,44(5):565-570.
    [16]
    Li Yujie,Zhongmin Liang,Yiming Hu,et al.A multi-model integration method for monthly streamflow prediction:Modified stacking ensemble strategy [J].Journal of Hydroinformatics,2020,22(2).
    [17]
    Bo Qiuyu,Cheng Wuqun.Intelligent control of agricultural irrigation through water demand prediction based on artificial neural network [J].Computational Intelligence and Neuroscience,2021.
    [18]
    张智韬,许崇豪,谭丞轩,等.基于无人机热红外遥感的玉米地土壤含水率诊断方法[J].农业机械学报,2020,51(3):180-190.

    Zhang Zhitao,Xu Chonghao,Tan Chengxuan,et al.Diagnosis method of soil moisture content in corn field based on thermal infrared remote sensing of UAV [J].Transactions of the Chinese Society for Agricultural Machinery,2020,51(3):180-190.
    [19]
    张振华,蔡焕杰,杨润亚.红外遥感估算春小麦农田土壤含水率的试验研究[J].农业工程学报,2006(3):84-87.

    Zhang Zhenhua,Cai Huanjie,Yang Runya.Experiment on estimating soil moisture content of spring wheat field with infrared remote sensing [J].Transactions of the Chinese Society of Agricultural Engineering,2006(3):84-87.
    [20]
    鲍海波,吴阳晨,张国应,等.基于特征加权Stacking集成学习的净负荷预测方法[J].电力建设,2022,43(9):104-116.

    Bao Haibo,Wu Yangchen,Zhang Guoying,et al.Net load forecasting method based on feature-weighted Stacking ensemble learning [J].Electric Power Construction,2022,43(9):104-116.
    [21]
    杨冰清,高珊.基于Stacking集成学习的蘑菇毒性判别研究[J].淮北师范大学学报(自然科学版),2022,43(3):17-21.

    Yang Bingqing,Gao Shan.A research on the toxicity of mushroom based on Stacking ensemble learning [J].Journal of Huaibei Normal University (Natural Sciences),2022,43(3):17-21.
    [22]
    孙明喆,毕瑶家,孙驰.改进随机森林算法综述[J].现代信息科技,2019,3(20):28-30.

    Sun Mingzhe,Bi Yaojia,Sun Chi.A survey of improved random forest algorithms [J].Modern Information Technology,2019,3(20):28-30.
    [23]
    王锦程,郁芸,杨坤,等.基于BP神经网络的脑肿瘤MRI图像分割[J].生物医学工程研究,2016,35(4):290-293.
    [24]
    马志昂,盖艾鸿,程久苗.基于BP人工神经网络的区域土地生态安全评价研究——以安徽省为例[J].中国农学通报,2014,30(23):289-295.

    Ma Zhi’ang,Gai Aihong,Cheng Jiumiao.Evaluation on ecological security of regional land based on BP artificial neural Network:A case of Anhui Province [J].Chinese Agricultural Science Bulletin,2014,30(23):289-295.
    [25]
    曾津,周建军.高维数据变量选择方法综述[J].数理统计与管理,2017,36(4):678-692.
    [26]
    王则玉,谢香文,刘国宏,等.干旱区绿洲滴灌成龄枣树耗水规律及作物系数[J].新疆农业科学,2015,52(4):675-680.

    Wang Zeyu,Xie Xiangwen,Liu Guohong,et al.Jujube drip irrigation water consumption and its crop coefficient in oasis of arid areas [J].Xinjiang Agricultural Sciences,2015,52(4):675-680.
    [27]
    孙博瑞.基于LSTM神经网络的智能灌溉系统开发[D].阿拉尔:塔里木大学,2022

    .Sun Borui.Development of intelligent irrigation system based on LSTM neural network [D].Alaer:Tarim University,2022
    [28]
    周少梁,孙三民,姚宝林,等.弥雾灌对枣园冠层环境和光合特性及产量品质的影响[J].农业机械学报,2021,52(5):249-257.

    Zhou Shaoliang,Sun Sanmin,Yao Baolin,et al.Effects of mist irrigation on canopy environment,photosynthetic characteristics,yield and quality of jujube orchard [J].Transactions of the Chinese Society for Agricultural Machinery,2021,52(5):249-257.

Catalog

    Article views (2) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return