Citation: | ZHOU Si-jie, LIU Tian-qi, CHEN Tian-hua. Research on rice disease recognition based on improved YOLOv5 algorithm[J]. Journal of Chinese Agricultural Mechanization, 2024, 45(8): 246-253. DOI: 10.13733/j.jcam.issn.2095-5553.2024.08.036 |
[1] |
亓璐,张涛,曾娟,等.近年我国水稻五大产区主要病害发生情况分析[J].中国植保导刊,2021, 41(4):37-42, 65.
Qi Lu, Zhang Tao, Zeng Juan, et al. Analysis of the occurrence and control of diseases in five major rice-producing areas in China in recent years[J]. China Plant Protection, 2021, 41(4), 37-42, 65.
|
[2] |
田有文,王立地,姜淑华.基于图像处理和支持向量机的玉米病害识别[J].仪器仪表学报,2006, 27(6):2123-2124.
|
[3] |
张建华,祁力钧,冀荣华,等.基于粗糙集和BP神经网络的棉花病害识别[J].农业工程学报,2012, 28(7):161-167.
Zhang Jianhua, Qi Lijun, Ji Ronghua, et al. Cotton diseases identification based on rough sets and BP neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(7):161-167.
|
[4] |
Omrani E, Khoshnevisan B, Shamshirband S, et al.Potential of radial basis function-based support vector regression for apple disease detection[J]. Measurement,2014, 55:512-519.
|
[5] |
Wang H, Li G, Ma Z, et al. Image recognition of plant diseases based on backpropagation networks[C]. 2012 5th International Congress on Image and Signal Processing.IEEE, 2012:894-900.
|
[6] |
Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[J].Communications of the ACM, 2017, 60(6):84-90.
|
[7] |
刘阗宇,冯全,杨森.基于卷积神经网络的葡萄叶片病害检测方法[J].东北农业大学学报,2018, 49(3):73-83.
Liu Tianyu, Feng Quan, Yang Sen. Detecting grape diseases based on convolutional neural network[J]. Journal of Northeast Agricultural University, 2018, 49(3):73-83.
|
[8] |
孙丰刚,王云露,兰鹏,等.基于改进YOLOv5s和迁移学习的苹果果实病害识别方法[J].农业工程学报,2022,38(11):171-179.
Sun Fenggang, Wang Yunlu, Lan Peng, et al.Identification of apple fruit diseases using improved YOLOv5s and transfer learning[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(11):171-179.
|
[9] |
Sanyal P, Patel S C. Pattern recognition method to detect two diseases in rice plants[J]. The Imaging Science Journal, 2008, 56(6):319-325.
|
[10] |
Lu Y, Yi S, Zeng N, et al. Identification of rice diseases using deep convolutional neural networks[J].Neurocomputing, 2017, 267:378-384.
|
[11] |
万颖,杨红云,王映龙,等.基于图像分割与卷积神经网络的水稻病害识别[J].西北农业学报,2022, 31(2):246-256.
|
[12] |
Redmon J, Divvala S, Girshick R, et al. You only look once:Unified, real-time object detection[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:779-788.
|
[13] |
Redmon J, Farhadi A. YOLOv3:An incremental improvement[J]. Computer Vision and Pattern Recognition, 2018, 87(8):101-104.
|
[14] |
Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4:Optimal speed and accuracy of object detection[J]. Computer Vision and Pattern Recognition, 2020, 57(5):9-12.
|
[15] |
Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]. Proceedings of the IEEE conference on Computer Cision and Pattern Recognition,2017:2117-2125.
|
[16] |
Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:8759-8768.
|
[17] |
Woo S, Park J, Lee J Y, et al. Cbam:Convolutional block attention module[C]. Proceedings of the European Conference on Computer Vision, 2018:3-19.
|
[18] |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C].Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2018:7132-7141.
|
[19] |
Gevorgyan Z. SIoU loss:More powerful learning for bounding box regression[J]. arXiv preprint arXiv:2205. 12740, 2022.
|
[20] |
Bodla N, Singh B, Chellappa R, et al. Soft-NMS:Improving object detection with one line of code[C].Proceedings of the IEEE International Conference on Computer vision, 2017:5561-5569.
|