高级检索+

水力侵蚀作用下土壤有机碳库稳定性机制研究进展

Advances in the study of the stability of soil organic carbon storage affected by water erosion

  • 摘要: 为了明晰水力侵蚀作用下土壤碳库的变化,本文总结和归纳了国内外水力侵蚀作用对土壤有机碳稳定性的影响和今后需加强研究的主要方向。运用文献调研法,剖析水力侵蚀机制,水力侵蚀现状及类型,自然侵蚀和加速侵蚀,水力侵蚀对土壤有机碳库存的影响,侵蚀碳"源、汇"论的分歧点,水力侵蚀对土壤有机碳选择性稳定机制、空间隔阻稳定机制和有机矿物结合稳定性机制等方面的最新研究进展,结果显示土壤有机碳的物理、化学和生物稳定机制均受水力侵蚀的影响。由于侵蚀区存在大量的有机碳更新、沉积区侵蚀迁移有机碳重新被沉积土壤团聚包裹并深埋形成稳定结构、阵发式侵蚀可埋藏大量的侵蚀碳于地势低洼的沉积区,因此,越来越多的学者提出侵蚀导致了土壤中碳库的增加。认为今后应进一步加强流域尺度侵蚀区和沉积区有机碳的稳定性和有机碳更新的质与量的研究。

     

    Abstract:
    Background Water erosion is an important process which causes shifts in the soil organic carbon storage and the global carbon cycle process. The physicochemical and biological stabilities of soil organic carbon are strongly affected by water erosion. Recently, growing studies show that the replacement of soil carbon on an eroding area is a crucial mechanism, the transport of organic carbon is re-aggregated in a depositional area then buried in the deep layer, and episodic erosion can bury a lot of erosion materials in low-lying depositional sites. Therefore, more and more investigators suggest water erosion leads to an increase of soil organic carbon storage.
    Methods We collected all relevant literature for this review. Based on these reference, we reviewed mechanisms of water erosion, current status and types of water erosion, divergence of carbon source or sink for CO2 under water erosion, factors impacting water erosion, effects of water erosion on soil organic carbon stock, effects of water erosion on soil carbon stability, and to further strengthen the study areas.
    Results Many investigators studied the relationship between water erosion and biogeochemical cycling at eroding and depositional zone, and obtained a series of beneficial results. 1) There are effects of water erosion on soil carbon storage. Soil scientists and agronomists understood that soil erosion by water released carbon, thus recognized as carbon source process. While geologist in sedimentation studied that water erosion resulted in soil carbon sink. 2) The mechanisms of soil organic carbon stability are classified as selective stabilization, physical protection, and orgao-mineral binding chemical stabilization. Selective stabilization refers to that the recycling period of some carbon is very long in over 100 years, thus they are not decomposed in this period. The physical protection refers to that soil particles, aggregates, layered silicate, molecular hydrophobicity and molecular nesting block the organic carbon and decomposer, so that it cannot be fully contacted and exist stably in the soil for a long time. Orgao-mineral binding chemical stabilization refers to that the organic carbon and soil mineral binding through coordination body exchange, polyvalent cationic bridge, hydrogen binding and molecular electrostatic attraction, so as to prolong the time of organic carbon turnover. 3) The research trends in this field include 4 aspects:Transport loss and composition change of dissolved organic carbon under erosion, migration and loss of organic carbon components by different erosion dynamics, renewal and stability of organic carbon in eroded in situ region, and stability of organic carbon in sedimentary area and its mechanism.
    Conclusions Current researches about soil carbon stability under water erosion demonstrate that the mechanisms of soil organic carbon stability are affected by water erosion.

     

/

返回文章
返回