Abstract:
Background Vegetation restoration is the main eco-engineering measure for controlling soil erosion and restoring degraded soils. Recently, scientists have proposed that biological measures for soil and water conservation in China should be oriented to enhance ecological function and should combine the specific ecological problems and social economic factors to set the ecosystem service as the major goal of the ecological restoration. To achieve those goals, managers and engineers require clear framework and tools.
Methods Here, we introduced a trait-based approach as a powerful tool to understand the mechanism of soil erosion controlled by vegetation restoration. A literature review was conducted to investigate how plant respond to erosion stresses and how plant influence soil function on plant trait level.
Results Based on the literature review, two key hypothesizes for applying the trait-based response-and-effect framework to control soil erosion were verified. 1) The intraspecific and interspecific variations in plant functional traits were significant heterogeneity. However, those variations were not entirely random, but rather influenced by environmental gradients. 2) Plant traits significantly affect soil ecological processes. With this context, we proposed a trait-based response-and-effect framework for ecological restoration on eroded land. That is, plant traits should be selected according to target restored ecosystem service (e.g., soil conservation, hydrological regulation and carbon storage). Firstly, the environmental stress factors of soil erosion and species interactions of the restored site should be clearly identified. Secondly, selected traits should not only affect the target ecosystem functions, but also not influenced by the environmental stress caused by erosional degradation (or inter-species interaction) or have stress tolerance. Furthermore, we summarized the erosion stress as drought, nutrient limitation, physical disturbance.
Conclusions We believe that this framework could extend the current research ideas and practices of soil and water conservation vegetation measures, and have important practical implications for improving biological measures of soil and water conservation.