高级检索+

水陆交错带护坡植物固土抗蚀能力比较分析

程虎, 李蒙, 杨劭, 张乃畅, 李厚峰

程虎, 李蒙, 杨劭, 张乃畅, 李厚峰. 水陆交错带护坡植物固土抗蚀能力比较分析[J]. 中国水土保持科学(中英文), 2024, 22(3): 56-63. DOI: 10.16843/j.sswc.2023057
引用本文: 程虎, 李蒙, 杨劭, 张乃畅, 李厚峰. 水陆交错带护坡植物固土抗蚀能力比较分析[J]. 中国水土保持科学(中英文), 2024, 22(3): 56-63. DOI: 10.16843/j.sswc.2023057
CHENG Hu, LI Meng, YANG Shao, ZHANG Naichang, LI Houfeng. Comparative analysis of soil reinforcement and anti-erosion capacity of slope protection plants in land-water ecotone[J]. Science of Soil and Water Conservation, 2024, 22(3): 56-63. DOI: 10.16843/j.sswc.2023057
Citation: CHENG Hu, LI Meng, YANG Shao, ZHANG Naichang, LI Houfeng. Comparative analysis of soil reinforcement and anti-erosion capacity of slope protection plants in land-water ecotone[J]. Science of Soil and Water Conservation, 2024, 22(3): 56-63. DOI: 10.16843/j.sswc.2023057

水陆交错带护坡植物固土抗蚀能力比较分析

基金项目: 

陕西省自然科学基础研究计划项目“引汉济渭二期工程湿地生态保护工程关键技术研究” 2021JLM-56

国家科技重大专项水体污染控制与治理项目“三峡库区小江汉丰湖流域水环境综合防治与示范” 2013ZX07104-004

详细信息
    作者简介:

    程虎(1994—),男,博士研究生。主要研究方向:湿地生态。E-mail: 953049156@qq.com

    通讯作者:

    杨劭(1965—),男,博士,教授。主要研究方向:湿地生态。E-mail: yangshao@ccnu.edu.cn

  • 中图分类号: S157

Comparative analysis of soil reinforcement and anti-erosion capacity of slope protection plants in land-water ecotone

  • 摘要:

    植物固土能力是生态护岸技术的关键影响因素,但对水陆交错带条件下的生态护坡植物固土能力的定量评估缺乏研究。选择耐旱耐淹且根系发达的芦竹、芦苇和风车草为研究对象,采用原位剪切试验和抗冲实验测定植物的抗剪切强度和土壤抗冲刷系数,对其固土能力进行综合比较,评价不同湿地植物的固土能力差别及其关键影响因子。结果表明: 1)芦竹、芦苇和风车草均可显著提高土壤的抗剪强度和抗冲性能,抗剪强度增幅分别为111.80%、77.43%和99.17%,抗冲性能增幅分别为299.40%、140.21%和183.79%;2)芦竹的茎横截面积比例、根系生物量、根系密度和单位枝数的根数都显著大于芦苇和风车草;3)植物根系的平均直径、总体积和总数量与土体抗剪切强度正相关,根系生物量、根系密度、单位枝数根数、样方内植物茎横截面积比例与抗冲系数正相关。适生植物可显著提高水陆交错带土体的抗蚀能力,芦竹耐旱抗涝并具有较强的固土能力,可作为河岸、湖岸和库岸以及消落带等水陆交错带生态护坡的优选物种。

    Abstract:
    Background 

    Ecological revetment is one of the protection technologies widely used in the stability of river banks, lakeshore, reservoir banks and water-level-fluctuating zones. The harsh land-water ecotone environment makes it challenging to choose appropriate plants for the purpose of ecological slope protection. The soil reinforcement capacity of plants is a key factor of ecological revetment technology. Quantitative assessment and comparison of the soil reinforcement capacity of wetland plants can provide a theoretical basis for ecological slope protection in land-water ecotone.

    Methods 

    In this study, Arundo donax, Phragmites australis and Cyperus alternifolius, which are drought and waterlogging resistance and have well-developed root system, were selected as the material in this research. Soil anti-shearing strength and anti-scourability were determined by in-situ shear test and anti-scour tests, enabling us to compare and analyze the soil reinforcement capacity of the plants and the influencing factors.

    Results 

    1) The results showed that A. donax, P. communis, and C. alternifolius significantly improved theanti-shearing strengthandanti-scourability, the anti-shearing strength of the three plants increased by 111.80%, 77.43% and 99.17% respectively, and the anti-scourability increased by 299.40%, 140.21% and 183.79% respectively. 2) The proportion of stem cross-sectional area, root biomass, root density and root number per unit branch number of A. donax were significantly higher than those of P. communis and C. alternifolius. 3) The analysis showed that the average diameter, total volume and total number of plant roots were positively correlated with the anti-shearing strength of soil. And the root biomass, root density, number of roots per unit branch and proportion of stem cross-sectional area in the quadrat were positively correlated with the anti-scourability of soil.

    Conclusions 

    This study demonstrates that suitable plants can significantly improve the erosion resistance of soil in land-water ecotone regions. A. donax shows the strongest effects on soil reinforcement and has strong drought and waterlogging resistance, making it an ideal candidate for ecological revetment in land-water ecotone regions.

  • 河岸、湖岸和库岸以及消落带等水陆交错带长期受到干湿交替、水位波动和水力侵蚀的影响,岸坡稳定性面临极大的破坏性压力,是崩塌风险最高的区域之一[1]。为应对水陆交错带特殊的地理条件,其岸坡防护技术措施包括传统的土木工程结构和生态护坡技术,其中生态护坡技术是通过植物或者将植物与土木工程措施相结合,保证护坡措施具有一定强度和耐久性的同时,兼顾护坡工程的环境效应和生物效应,达到恢复生态环境、治理水土流失的目的[2]。生态护坡在生态修复工程和景观工程中的应用已十分普遍。

    生态护坡技术效果的关键影响因素是植物的固土能力[3]。植物通过根系在土体中穿插、缠绕、网络、固结,使土体抵抗风化吹蚀、流水冲刷和重力侵蚀的能力增强[4-5]。普遍认为植物根系对土体有加筋效应,根系在土中穿插交织并在土体受力时发挥其抗拉力来增强土体的抗剪强度,同时根土接触界面越大,产生的摩擦力和咬合力越大,则根系对土体黏聚力的增强效应越显著[6]。评价根系固土能力的重要指标包括抗剪强度和抗冲性能[4]。前人研究中发现土壤抗剪切强度与植物的根系数量、根系生物量、根长密度和根系表面积密度等有关[7],抗冲性能与根系密度密切相关[8]。如陈义君等[9]和刘定辉等[10]研究发现土壤的抗剪切强度与植物的根系数量和生物量呈显著的正相关性。卢立霞等[8]发现不同植物种类对土壤抗冲性的增强效果不同,这与植物的根系生物量和根系形态学指标之间有明显关系。

    水陆交错带严苛的土壤干湿交替以及水流冲刷条件,使生态护坡的适用植物选择面临很大困难,也是该区域生态护坡的难点所在[1]。虽然生态护坡植物的筛选研究已有报道,但主要集中于陆生植物[2],针对水陆交错带生理适应性和固土能力强的植物的筛选研究仍比较缺乏。当前对河岸带、湖岸带、库岸带以及消落带的生态护坡工程植物的选择主要是考虑覆盖度、耐淹特性和景观效果,其固土能力的定量评估和比较研究较少。笔者根据水陆交错带的条件,并以野外生态调查结果为依据,选择3种根系发达、耐旱耐淹的水生植物作为研究对象,测定分析其根系特性、抗剪切强度和抗冲性,定量评估并比较其固土能力及其影响因素,不仅为水陆交错带生态护坡的植物筛选提供定量评估方法,也可获得适用的具有很强固土能力的植物品种,未来推广应用于水陆交错带的生态护坡工程中。

    试验地点位于华中师范大学生态园,所用土壤为粉砂壤土,理化指标为:有机质30.23 g/kg,全磷0.42 g/kg,全氮1.31 g/kg,pH值7.40。对样地土壤进行翻耕、清理和平整,保障试验地块土壤性状分布一致。3种挺水植物:芦竹(Arundo donax)属于禾本科芦竹属(Arundo);芦苇(Phragmites australis)属于禾本科芦苇属(Phragmites);风车草(Cyperus alternifolius)属于莎草科莎草属(Cyperus)。植物种苗来自于重庆苗圃基地。选择长势良好的植株,裁剪掉地上部分,保留约为30 cm,分割为单枝,进行扦插种植,栽培期间定期去除植株周围的杂草,植株生长6个月后形成成熟的植物丛,选择长势良好的具有代表性样方进行原位剪切和抗冲性实验。

    采用目前较为通用的原位剪切实验方法进行抗剪强度测试[11]。土壤抗冲性的测试方法采用改进的原状土冲刷水槽法[12]。采用环刀法测定根土复合体的密度;土壤含水量采用烘干法;采用筛分法和土壤比重计分析土壤粒径组成;土壤总孔隙度(ρ,%)采用经验公式ρ=93.947-32.995d计算(d为土壤密度)[13];采用WinRHIZO根系分析系统(霍尔德电子,HED-WinRHIZO)进行根系扫描,包括其根系长度、根系直径、根数、根表面积和根体积;干质量采用105 ℃烘干法;植物的根系密度为根系干质量和土壤体积(剪切箱的体积)的比值[12]

    采用软件Origin和R对实验数据进行绘图,并采用软件SPSS V.22对实验数据进行统计分析。各指标的差异均采用单因素方差分析,选用最小显著性差异法(LSD)进行多重比较(P < 0.05),抗侵蚀性能与土壤因子之间关系采用Pearson相关性分析。抗剪切强度和抗冲刷系数与植物特性间的关系采用冗余分析(RDA)分析。

    裸土样方与3种植物样方的含水量基本一致,组间无显著性差异;但3种植物根土复合体密度都小于裸土,而土壤孔隙度大于裸土(图 1)。

    图  1  土壤含水率、密度和孔隙度
    字母相同表示组间差异不显著,字母不同表示组间具有显著性差异P < 0.05。
    Figure  1.  Soil moisture content, density and porosity
    The same letter indicates no significant differences between groups, while different letters indicate significant differences between groups (P < 0.05).

    3种植物样方土壤粒径分布一致,差异不明显,但与裸土相比,植物样方土壤中黏粒(< 0.002 mm)和粉砂粒(0.002~ < 0.050 mm)的组成均表现为明显增加,且占总粒径组成的70%以上;而≥0.050 mm的粒径比例呈现下降趋势(图 2)。

    图  2  裸土及处理组土壤的粒径组成
    Figure  2.  Particle size composition of bulk soil and treatment group soil

    经过种植后,单株植物形成植物丛。植物茎横截面积覆盖率和地上部分的生物量差异显著(P < 0.05),表现为芦竹>风车草>芦苇。芦竹地下部分生物量、根系密度和不同单位枝数的根数都显著大于芦苇和风车草(P < 0.05)。芦苇的总根长显著大于芦竹和风车草,而根总表面积在各组间差异不明显。芦竹和风车草根平均直径显著大于芦苇(P < 0.05)(表 1)。

    表  1  样方植物形态特性比较(平均值±SD值)
    Table  1.  Morphological characteristics of the plants in quadrat (Mean±Standard deviation)
    植物形态特征
    Plant morphological characteristics
    芦竹
    Arundo donax
    芦苇
    Phragmites australis
    风车草
    Cyperus alternifolius
    株高Plant height/cm 303.33±44.24a 202.00±17.32b 181.33±10.5b
    样方内植物枝数Number of branches 13.33±1.52c 22.33±2.08b 29.00±2.00a
    茎横截面积比例Proportion of plant stem cross-sectional area/% 6.14±0.70a 0.36±0.03c 2.85±0.20b
    地上部分生物量Aboveground biomass/g 2 668.67±486.72a 495.33±68.48c 1 232.00±34.00b
    地下部分生物量Underground biomass/g 73.84±14.74a 37.78±8.86b 45.62±3.96b
    总根数Total number of roots 180.00±57.82a 107.00±30.64b 163.67±26.10a
    总根长Total length of roots/cm 3 427.44±627.10b 5 502.06±782.46a 3 296.21±394.39b
    根总表面积Total surface area of roots/cm2 1 329.05±418.28a 1 440.50±172.36a 1 274.38±140.09a
    根平均直径Average diameter of roots/cm 1.25±0.25a 0.84±0.04b 1.28±0.01a
    根系总体积Total volume of roots/cm3 42.61±21.93a 30.15±3.57a 40.66±4.68a
    根系密度Density of roots/(g·cm-2) 0.002 7±0.000 8a 0.001 1±0.000 3b 0.001 4±0.000 1b
    单位枝数的根数Number of branches per unit 13.30±2.99a 4.77±1.11b 5.63±0.65b
    注:字母相同表示组间差异不显著,字母不同表示组间具有显著性差异P < 0.05。下同。Notes: The same letter indicates no significant differences between groups, while different letters indicate significant differences between groups (P < 0.05). The same below.
    下载: 导出CSV 
    | 显示表格

    相对于裸土,3种植物根系显著增加了土壤的抗剪切强度(表 2)。芦竹和风车草样方抗剪切强度增幅较大,芦苇样方的抗剪切强度最小,增幅也小。芦竹单位根质量对土壤抗剪强度的增强值最小,而单位枝数的抗剪强度增强值最大,芦苇与风车草之间差异不明显。

    表  2  土壤抗剪切强度比较(平均值±SD值)
    Table  2.  Comparsion of soil anti-shearing strengths (Mean±Standard deviation)
    组别Group SR/kPa ΔSR/kPa N/% ΔSR/mR ΔSR/n
    芦竹Arundo donax 85.25±5.25a 45.00±5.25a 111.80±13.04a 3.15±0.55b 3.40±0.54a
    芦苇Phragmites australis 71.42±2.18b 31.17±2.18b 77.43±5.42b 4.17±0.18a 1.40±0.03b
    风车草Cyperus alternifolius 80.17±1.26a 39.92±1.26a 99.17±3.13a 4.79±0.39a 1.38±0.12b
    裸土Bulk soil 40.25±2.54c
    注:SR为抗剪切性;ΔSR为每种植物对于裸土抗剪强度的增强值;N为增幅;ΔSR/mR为单位根质量的土壤抗剪增强值;ΔSR/n为单位枝数的土壤抗剪增强值。下同。Notes: SR is shear resistance. ΔSR is the enhancement value of bulk soil anti-shearing strength after planting plants. N is the increase rate. ΔSR/mR is the enhancement value of soil anti-shearing strength per unit root dry mass. ΔSR/n is the enhancement value of soil anti-shearing strength per unit number of branches. The same below.
    下载: 导出CSV 
    | 显示表格

    植物样方的抗冲刷能力显著高于裸土样方(P < 0.05)。植物样方抗冲刷系数表现为芦竹>风车草>芦苇(表 3)。单位根质量增强值无差异,而单位枝数抗冲系数芦竹显著高于其他2种植物(P < 0.05)。

    表  3  不同组的抗冲刷系数(平均值±SD值)
    Table  3.  Anti-scour coefficients of different groups (Mean±Standard deviation)
    组别Group ER ΔER N/% ΔER/mR ΔER/n
    芦竹Arundo donax 0.733±0.060a 0.549±0.060a 299.40±32.86a 0.039±0.008a 0.042±0.008a
    芦苇Phragmites australis 0.441±0.019c 0.257±0.019c 140.21±10.56c 0.034±0.003a 0.012±0.001b
    风车草Cyperus alternifolius 0.521±0.027b 0.337±0.027b 183.79±14.87b 0.040±0.003a 0.012±0.001b
    裸土Bulk soil 0.183±0.006d
    注:ER为抗冲刷系数;ΔER为每种植物对于裸土抗冲刷强度的增强值;ΔER/mR为单位根质量的土壤抗冲刷强度的增强值;ΔER/n为单位枝数的土壤抗冲刷强度的增强值。下同。Notes: ER is anti-scour coefficient. ΔER is the enhancement value of bulk soil anti-scourability after planting plants. ΔER/mR is the enhancement value of soil anti-scourability per unit root dry mass. ΔER/n is the enhancement value of soil anti-scourability per unit number of branches. The same below.
    下载: 导出CSV 
    | 显示表格

    样方的抗剪强度和抗冲刷系数之间具有极显著的正相关关系。抗剪切强度和抗冲刷系数与根土复合体密度、砂粒呈显著负相关,与土壤孔隙度、粉砂粒、黏粒呈极显著正相关,而与含水量没有显著相关性(表 4)。

    表  4  土壤特性与根土复合体的抗剪切强度及抗冲刷系数的相关分析结果
    Table  4.  Correlation analysis of soil properties with anti-shearing strength and anti-scour coefficient of root-soil complex
    抗侵蚀能力
    Anti-erosion capacity
    SR 土壤含水率
    Soil moisture content
    土壤密度
    Soil density
    土壤孔隙度
    Soil porosity
    砂粒
    Sand ≥0.050~2.000 mm
    粉砂粒
    Silt ≥0.002~0.050 mm
    黏粒
    Clay < 0.002 mm
    ER 0.940** 0.184 -0.713** 0.713** -0.802** 0.791** 0.858**
    SR 1 0.168 -0.793** 0.793** -0.763** 0.760** 0.965**
    注:*表示在0.05水平(双侧)上显著相关;**表示在0.01水平(双侧)上显著相关。Notes: * indicates a significant correlation at the 0.05 level (test of two-tailed). ** indicates a significant correlation at the 0.01 level (test of two-tailed).
    下载: 导出CSV 
    | 显示表格

    根土复合体的抗剪切强度与总根数、根平均直径、根系总体积之间呈显著正相关性,抗冲刷系数与根系生物量、根系密度、单位枝数的根数、样方内茎横截面积比例呈显著正相关(图 3)。

    图  3  抗剪切强度和抗冲刷系数与植物特性间RDA分析
    RFW为根系鲜重;RL为根总长;REA为根总表面积;ARD为根平均直径;RV为根系总体积;RD为根系密度;NBP为单位枝数的根数;TNR为总根数;SC为样方内茎横截面积比例。
    Figure  3.  RDA analysis of anti-shearing strength and anti-scour coefficient with plant characteristics
    RFW is the fresh weight of the roots. RL is the total length of the roots. REA is the total surface area of roots. ARD is the average diameter of the roots. RV is the total volume of the roots. RD is the density of roots. NBP is the number of branches per unit. TNR is the total number of roots. SC is the proportion of plant stem cross-sectional area in the quadrat.

    评价植物固土能力的重要指标是根系对土壤抗剪切强度和抗冲刷性能[4],抗剪切强度和抗冲刷性能越好,表明土体越稳定。本研究采用原位剪切试验保留了土壤颗粒的原始黏结构造,能较大限度的反映根土复合体的自然状况[14]。研究结果发现芦竹、芦苇和风车草根系均能显著提高土体的抗剪强度,相对裸土的增幅分别为111.80%、77.43%和99.17%。表明植物可以很好的改善土体的抗剪切强度。段青松等[11]对陆生草本植物对土壤抗剪强度提高的研究,裸土的抗剪强度为54.20 kPa,植物组的抗剪强度范围为55.70~93.50 kPa,仅有2.80%~72.50%的提高。抗剪强度与增量的显著差异可能是因为土壤质地和含水量的不同[4],同时不同种类植物根系强度和在土壤中的空间分布状况差异也会导致土体抗剪强度差异[6]。土壤的含水量可以显著影响复合土体黏聚力,致使抗剪强度随含水量的增加而减小[15],而本研究土壤含水率较高,在各土壤之间没有差异性,相关性的结果也表明本研究含水率与土体抗剪切能力没有显著相关性。这表明在含水量高的土壤中,植物根系对土壤抗剪强度的影响大于含水率。这与Zhu等[15]和熊寿德等[16]的研究结果一致。

    在3种植物中,芦竹具有最高的根系密度,且单位枝数的抗剪强度增强值显著高于芦苇和风车草,表明在相同面积情况下,较少芦竹的枝数具有更多的根系,对土壤的抗剪切强度有更大的增强效应。RDA的分析也表明根系的平均直径、根系总体积和总根的数量与土体抗剪切强度具有显著的相关性关系。植物根系在土壤中穿插,形成植物网状结构,植物根系可以通过深根锚定以及浅根的加筋作用来维持土体的稳定性,更多的根系数量代表植物根系越发达,根系与土体更紧密的接触,土体结构越稳定[17]。根系可在土壤中产生刚性结构,刚性越强说明,结构越稳定[18],根系直径越粗,可能具有更大的刚性强度,使土壤的抗剪性能也更大。

    土壤抗冲性指土壤抵抗径流机械破坏作用的能力,是土壤抗侵蚀性能的重要方面和直观表现[19]。本研究发现芦竹、芦苇和风车草均能有效提高土体的抗冲性能,抗冲系数相对裸土的增幅分别为299.40%、140.21%和183.79%。植物增强土壤抗冲刷能力主要是由于根系的固结作用、茎秆对土壤表面水流冲击的减缓作用以及土壤结构的改善作用。土体中植物根系是影响土壤抗冲性的重要生物因素[4],Zhou等[20]研究发现植物根系能显著提高土壤的稳定性和抗侵蚀性,表层(0~30 cm)含根土壤的抗冲性显著高于底层,根系表面积密度与抗冲性有显著正相关性。本研究发现根系生物量、根系密度、单位枝数根数、样方内茎横截面积比例与抗冲系数显著正相关。这与徐少君等[21]的研究结果相似。说明根系对土壤抗冲指数有较大影响,根系密度越大、根系生物量越高,土壤抗冲性能越强。芦苇根系形态特性与芦竹和风车草不同,芦苇根长和根表面积显著大于芦竹和风车草,但其总根数、根平均直径显著低于芦竹和风车草,即根数少且根细,导致其抗冲和抗剪能力较差。地上部分植物茎秆可有效减缓水流的冲刷效果,增加土体的抗冲刷性能。芦竹样方茎横截面积比例远大于风车草和芦苇,也是芦竹抗冲能力较强的原因。此外活根能提供分泌物,死根提供有机质作为土壤团粒的胶结剂,使土壤结构性提高,团聚体结构增加[19]。本研究中植物根系使土体中的微团聚体(< 0.25 mm)含量增大,粉砂粒和黏粒与抗冲刷系数具有极显著的相关性。团聚体是水中具有低分散性且较为稳定的胶结物组成,这些物质会大大提升土壤的黏性和重度,团聚体的含量越高土体的黏结性越高,抗侵蚀能力越强[22]

    虽然本研究中3种植物均显著提升土壤的抗剪强度和抗冲性能,但可以发现3种植物间固土能力具有差异性,表现为芦竹和风车草抗剪能力较强。芦竹抗冲刷性能最好,风车草次之,芦苇综合固土能力最差。比较各植物根际形态特性可以发现,芦竹的茎横截面积比例、根系生物量、根系密度和单位枝数的根数都显著大于另外2种植物。与常见边坡修复植物比较,芦竹总根长、根平均直径、根表面积和根生物量都显著高于草本植物[23]和常见灌木[24]。此外,芦竹的分布范围广泛,对重金属、盐碱地也具有一定程度的耐受性,喜光耐阴、耐干旱和水淹,生境适用性宽,可以广泛应用于河岸、湖岸和库岸以及消落带等水陆交错带的生态护坡中。

    本研究测定了水生植物芦竹、芦苇和风车草根系—土壤复合体的抗剪强度和抗冲刷系数,对其固土能力进行综合比较,芦竹、芦苇和风车草均能显著提高土体的抗剪强度和抗冲刷性能,抗剪切强度表现为芦竹>芦苇=风车草,抗冲系数表现为芦竹>芦苇=风车草,芦竹固土抗冲能力最强,风车草次之,芦苇最差。芦竹具有发达的根系和广泛的适应性,可作为河岸、湖岸和库岸以及消落带等水陆交错带生态护坡的优选物种。植物根系的平均直径、根系总体积和总根的数量与土体的抗剪切强度有较强的关系,根系生物量、根系密度、单位枝数根数、样方内茎横截面积比例与抗冲系数具有显著正相关。

  • 图  1   土壤含水率、密度和孔隙度

    字母相同表示组间差异不显著,字母不同表示组间具有显著性差异P < 0.05。

    Figure  1.   Soil moisture content, density and porosity

    The same letter indicates no significant differences between groups, while different letters indicate significant differences between groups (P < 0.05).

    图  2   裸土及处理组土壤的粒径组成

    Figure  2.   Particle size composition of bulk soil and treatment group soil

    图  3   抗剪切强度和抗冲刷系数与植物特性间RDA分析

    RFW为根系鲜重;RL为根总长;REA为根总表面积;ARD为根平均直径;RV为根系总体积;RD为根系密度;NBP为单位枝数的根数;TNR为总根数;SC为样方内茎横截面积比例。

    Figure  3.   RDA analysis of anti-shearing strength and anti-scour coefficient with plant characteristics

    RFW is the fresh weight of the roots. RL is the total length of the roots. REA is the total surface area of roots. ARD is the average diameter of the roots. RV is the total volume of the roots. RD is the density of roots. NBP is the number of branches per unit. TNR is the total number of roots. SC is the proportion of plant stem cross-sectional area in the quadrat.

    表  1   样方植物形态特性比较(平均值±SD值)

    Table  1   Morphological characteristics of the plants in quadrat (Mean±Standard deviation)

    植物形态特征
    Plant morphological characteristics
    芦竹
    Arundo donax
    芦苇
    Phragmites australis
    风车草
    Cyperus alternifolius
    株高Plant height/cm 303.33±44.24a 202.00±17.32b 181.33±10.5b
    样方内植物枝数Number of branches 13.33±1.52c 22.33±2.08b 29.00±2.00a
    茎横截面积比例Proportion of plant stem cross-sectional area/% 6.14±0.70a 0.36±0.03c 2.85±0.20b
    地上部分生物量Aboveground biomass/g 2 668.67±486.72a 495.33±68.48c 1 232.00±34.00b
    地下部分生物量Underground biomass/g 73.84±14.74a 37.78±8.86b 45.62±3.96b
    总根数Total number of roots 180.00±57.82a 107.00±30.64b 163.67±26.10a
    总根长Total length of roots/cm 3 427.44±627.10b 5 502.06±782.46a 3 296.21±394.39b
    根总表面积Total surface area of roots/cm2 1 329.05±418.28a 1 440.50±172.36a 1 274.38±140.09a
    根平均直径Average diameter of roots/cm 1.25±0.25a 0.84±0.04b 1.28±0.01a
    根系总体积Total volume of roots/cm3 42.61±21.93a 30.15±3.57a 40.66±4.68a
    根系密度Density of roots/(g·cm-2) 0.002 7±0.000 8a 0.001 1±0.000 3b 0.001 4±0.000 1b
    单位枝数的根数Number of branches per unit 13.30±2.99a 4.77±1.11b 5.63±0.65b
    注:字母相同表示组间差异不显著,字母不同表示组间具有显著性差异P < 0.05。下同。Notes: The same letter indicates no significant differences between groups, while different letters indicate significant differences between groups (P < 0.05). The same below.
    下载: 导出CSV

    表  2   土壤抗剪切强度比较(平均值±SD值)

    Table  2   Comparsion of soil anti-shearing strengths (Mean±Standard deviation)

    组别Group SR/kPa ΔSR/kPa N/% ΔSR/mR ΔSR/n
    芦竹Arundo donax 85.25±5.25a 45.00±5.25a 111.80±13.04a 3.15±0.55b 3.40±0.54a
    芦苇Phragmites australis 71.42±2.18b 31.17±2.18b 77.43±5.42b 4.17±0.18a 1.40±0.03b
    风车草Cyperus alternifolius 80.17±1.26a 39.92±1.26a 99.17±3.13a 4.79±0.39a 1.38±0.12b
    裸土Bulk soil 40.25±2.54c
    注:SR为抗剪切性;ΔSR为每种植物对于裸土抗剪强度的增强值;N为增幅;ΔSR/mR为单位根质量的土壤抗剪增强值;ΔSR/n为单位枝数的土壤抗剪增强值。下同。Notes: SR is shear resistance. ΔSR is the enhancement value of bulk soil anti-shearing strength after planting plants. N is the increase rate. ΔSR/mR is the enhancement value of soil anti-shearing strength per unit root dry mass. ΔSR/n is the enhancement value of soil anti-shearing strength per unit number of branches. The same below.
    下载: 导出CSV

    表  3   不同组的抗冲刷系数(平均值±SD值)

    Table  3   Anti-scour coefficients of different groups (Mean±Standard deviation)

    组别Group ER ΔER N/% ΔER/mR ΔER/n
    芦竹Arundo donax 0.733±0.060a 0.549±0.060a 299.40±32.86a 0.039±0.008a 0.042±0.008a
    芦苇Phragmites australis 0.441±0.019c 0.257±0.019c 140.21±10.56c 0.034±0.003a 0.012±0.001b
    风车草Cyperus alternifolius 0.521±0.027b 0.337±0.027b 183.79±14.87b 0.040±0.003a 0.012±0.001b
    裸土Bulk soil 0.183±0.006d
    注:ER为抗冲刷系数;ΔER为每种植物对于裸土抗冲刷强度的增强值;ΔER/mR为单位根质量的土壤抗冲刷强度的增强值;ΔER/n为单位枝数的土壤抗冲刷强度的增强值。下同。Notes: ER is anti-scour coefficient. ΔER is the enhancement value of bulk soil anti-scourability after planting plants. ΔER/mR is the enhancement value of soil anti-scourability per unit root dry mass. ΔER/n is the enhancement value of soil anti-scourability per unit number of branches. The same below.
    下载: 导出CSV

    表  4   土壤特性与根土复合体的抗剪切强度及抗冲刷系数的相关分析结果

    Table  4   Correlation analysis of soil properties with anti-shearing strength and anti-scour coefficient of root-soil complex

    抗侵蚀能力
    Anti-erosion capacity
    SR 土壤含水率
    Soil moisture content
    土壤密度
    Soil density
    土壤孔隙度
    Soil porosity
    砂粒
    Sand ≥0.050~2.000 mm
    粉砂粒
    Silt ≥0.002~0.050 mm
    黏粒
    Clay < 0.002 mm
    ER 0.940** 0.184 -0.713** 0.713** -0.802** 0.791** 0.858**
    SR 1 0.168 -0.793** 0.793** -0.763** 0.760** 0.965**
    注:*表示在0.05水平(双侧)上显著相关;**表示在0.01水平(双侧)上显著相关。Notes: * indicates a significant correlation at the 0.05 level (test of two-tailed). ** indicates a significant correlation at the 0.01 level (test of two-tailed).
    下载: 导出CSV
  • [1] 冯育青, 王莹, 阮宏华. 水岸带研究综述[J]. 南京林业大学学报, 2009, 33(6): 127. https://www.cnki.com.cn/Article/CJFDTOTAL-NJLY200906035.htm

    FENG Yuqing, WANG Ying, RUAN Honghua. A review of the researches on riparian zones[J]. Journal of Nanjing Forestry University, 2009, 33(6): 127. https://www.cnki.com.cn/Article/CJFDTOTAL-NJLY200906035.htm

    [2] 陈洁, 雷学文, 黄泽彬, 等. 生态边坡稳定机制研究综述[J]. 安徽农业大学学报, 2019, 46(2): 282. https://www.cnki.com.cn/Article/CJFDTOTAL-ANHU201902013.htm

    CHEN Jie, LEI Xuewen, HUANG Zebin, et al. Review on the mechanism of ecological slope stability[J]. Journal of Anhui Agricultural University, 2019, 46(2): 282. https://www.cnki.com.cn/Article/CJFDTOTAL-ANHU201902013.htm

    [3] 曾红艳, 吴美苏, 周成, 等. 根系与植筋带固土护坡的力学机理试验研究[J]. 岩土工程学报, 2020, 42(2): 151. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S2027.htm

    ZENG Hongyan, WU Meisu, ZHOU Cheng, et al. Experimental study on reinforcement mechanism of vegetated slopes with root system and vertical geotextile belts[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 151. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S2027.htm

    [4] 熊燕梅, 夏汉平, 李志安, 等. 植物根系固坡抗蚀的效应与机理研究进展[J]. 应用生态学报, 2007, 18(4): 895. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200704031.htm

    XIONG Yanmei, XIA Hanping, LI Zhian, et al. Effects and mechanisms of plant roots on slope reinforcement and soil erosion resistance: A research review[J]. Chinese Journal of Applied Ecology, 2007, 18(4): 895. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200704031.htm

    [5]

    WANG Yu, SHU Zongying, ZHENG Yingren, et al. Plant root reinforcement effect for coastal slope stability[J]. Journal of Coastal Research, 2015, 73(1): 216.

    [6]

    FAN Chiacheng, TSAI Minghung. Spatial distribution of plant root forces in root-permeated soils subject to shear[J]. Soil and Tillage Research, 2016, 156: 1. DOI: 10.1016/j.still.2015.09.016

    [7] 陆桂红, 杨顺, 王钧, 等. 植物根系固土力学机理的研究进展[J]. 南京林业大学学报, 2014, 38(2): 151. https://www.cnki.com.cn/Article/CJFDTOTAL-NJLY201402031.htm

    LU Guihong, YANG Shun, WANG Jun, et al. The mechanism of plant roots reinforcement on soil[J]. Journal of Nanjing Forestry University, 2014, 38(2): 151. https://www.cnki.com.cn/Article/CJFDTOTAL-NJLY201402031.htm

    [8] 卢立霞, 曾波. 三峡库区嘉陵江岸生优势须根系植物根系对土壤抗冲性的增强效应研究[J]. 西南师范大学学报, 2006, 31(3): 157. https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK200603035.htm

    LU Lixia, ZENG Bo. Enhancement effects of dominant riparian diffuse-rooted plants of Jialing River in Three Gorges Reservoir Region on soil anti-scouribility[J]. Journal of Southwest China Normal University, 2006, 31(3): 157. https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK200603035.htm

    [9] 陈义君, 彭石磊, 谌芸, 等. 紫色土坡耕地香根草根系的固土抗蚀效应[J]. 草业科学, 2015, 32(4): 485. https://www.cnki.com.cn/Article/CJFDTOTAL-CYKX201504001.htm

    CHEN Yijun, PENG Shilei, CHEN Yun, et al. Soil erosion control effectiveness of Vetiveria zizanioides root system in the purple soil cropland[J]. Pratacultural Science, 2015, 32(4): 485. https://www.cnki.com.cn/Article/CJFDTOTAL-CYKX201504001.htm

    [10] 刘定辉, 李勇. 植物根系提高土壤抗侵蚀性机理研究[J]. 水土保持学报, 2003, 17(3): 34. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200303010.htm

    LIU Dinghui, LI Yong. Mechanism of plant roots improving resistance of soil to concentrated flow erosion[J]. Journal of Soil and Water Conservation, 2003, 17(3): 34. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200303010.htm

    [11] 段青松, 何丙辉, 余建新, 等. 金沙江干热河谷乡土草本植物根系固土能力原位测定[J]. 云南大学学报, 2015, 37(5): 779. https://www.cnki.com.cn/Article/CJFDTOTAL-YNDZ201505021.htm

    DUAN Qingsong, HE Binghui, YU Jianxin, et al. In situ measurement on the capability of fixing soil of local herbaceous roots in dry-hot valley of Jinsha River[J]. Journal of Yunnan University, 2015, 37(5): 779. https://www.cnki.com.cn/Article/CJFDTOTAL-YNDZ201505021.htm

    [12] 郭平, 王云琦, 王玉杰, 等. 重庆缙云山典型林分土壤抗冲性的最佳土壤结构指标研究[J]. 土壤, 2014, 46(1): 111. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201401019.htm

    GUO Ping, WANG Yunqi, WANG Yunjie, et al. Study on best soil structure indicators based on soil anti-scourability under different forests[J]. Soils, 2014, 46(1): 111. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201401019.htm

    [13] 兰晓玲, 谢英荷, 白彦真, 等. 14种本土草本植物固定铅污染土壤的试验研究[J]. 水土保持学报, 2013, 27(1): 152. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201301032.htm

    LAN Xiaoling, XIE Yinghe, BAI Yanzhen, et al. Experimental study on stablization of Pb-polluted soil by 14 native herbaceous plants[J]. Journal of Soil and Water Conservation, 2013, 27(1): 152. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201301032.htm

    [14]

    COMINO E, MARENGO P, ROLLI V. Root reinforcement effect of different grass species: A comparison between experimental and models results[J]. Soil and Tillage Research, 2010, 110(1): 60. DOI: 10.1016/j.still.2010.06.006

    [15]

    ZHU Jinqi, MAO Zhun, WANG Yunqi, et al. Soil moisture and hysteresis affect both magnitude and efficiency of root reinforcement[J]. Catena, 2022, 219: 106574. DOI: 10.1016/j.catena.2022.106574

    [16] 熊寿德, 段青松, 方雪峰, 等. 三江并流区水电站消落带适生草本植物根系固土能力[J]. 生态学报, 2022, 42(17): 7210. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202217029.htm

    XIONG Shoude, DUAN Qingsong, FANG Xuefeng, et al. Soil-fixing capacity of suitable herbaceous plant roots in the water-level fluctuating zone of hydropower station in the Three Parallel Rivers[J]. Acta Ecologica Sinica, 2022, 42(17): 7210. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202217029.htm

    [17]

    WU T H. Root reinforcement of soil: Review of analytical models, test results, and applications to design[J]. Canadian Geotechnical Journal, 2013, 50(3): 259. DOI: 10.1139/cgj-2012-0160

    [18] 程洪, 张新全. 草本植物根系网固土原理的力学试验探究[J]. 水土保持通报, 2002, 22(5): 20. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB200205005.htm

    CHENG Hong, ZHANG Xinquan. An experimental study on herb plant root system for strength principle of soil-fixation[J]. Bulletin of Soil and Water Conservation, 2002, 22(5): 20. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB200205005.htm

    [19] 王库. 植物根系对土壤抗侵蚀能力的影响[J]. 土壤与环境, 2001, 10(3): 250. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ200103022.htm

    WANG Ku. Effects of plant roots on soil anti-erosion[J]. Soil and Environmental Sciences, 2001, 10(3): 250. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ200103022.htm

    [20]

    ZHOU Zhengchao, SHANGGUAN Zhouping. Soil anti-scouribility enhanced by plant roots[J]. Journal of Integrative Plant Biology, 2005, 47(6): 676. DOI: 10.1111/j.1744-7909.2005.00067.x

    [21] 徐少君, 曾波. 三峡库区5种耐水淹植物根系增强土壤抗侵蚀效能研究[J]. 水土保持学报, 2008, 22(6): 13. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200806002.htm

    XU Shaojun, ZENG Bo. Enhancement effects of 5 flooding-tolerant species roots on soil anti-erodibility in Three Gorges Reservoir region[J]. Journal of Soil and Water Conservation, 2008, 22(6): 13. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200806002.htm

    [22]

    BRONICK C J, LAL R. Soil structure and management: A review[J]. Geoderma, 2005, 124(1/2): 3.

    [23] 贺环宇, 李鹏飞, 胡永歌, 等. 高速公路不同坡向边坡草本植物根系特征研究[J]. 西南农业学报, 2017, 30(4): 915. https://www.cnki.com.cn/Article/CJFDTOTAL-XNYX201704033.htm

    HE Huanyu, LI Pengfei, HU Yongge, et al. Study on root system features of herbaceous plants at different aspects of highway slope[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(4): 915. https://www.cnki.com.cn/Article/CJFDTOTAL-XNYX201704033.htm

    [24] 闫东锋, 王德彩, 杨喜田. 丹江口库区不同植被类型地表根系对土壤渗透性的影响[J]. 中国水土保持科学, 2016, 14(3): 35. DOI: 10.16843/j.sswc.2016.03.005

    YAN Dongfeng, WANG Decai, YANG Xitian, et al. Effects of surface root system on soil infiltration at different vegetation types in Danjiangkou Reservoir area[J]. Science of Soil and Water Conservation, 2016, 14(3): 35. DOI: 10.16843/j.sswc.2016.03.005

图(3)  /  表(4)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  2
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-28
  • 修回日期:  2023-11-02
  • 网络出版日期:  2024-08-13
  • 刊出日期:  2024-06-29

目录

/

返回文章
返回