Abstract:
Background Soil and water conservation measures possess a strong carbon sequestration capacity. Through methods such as trapping sediment, conserving soil, nurturing vegetation, they regulate surface runoff, thereby reducing carbon emissions caused by soil erosion. This is beneficial for consolidating and increasing the capacity of the ecosystem's carbon reservoir. The measurement, monitoring and assessment of carbon sinks via soil and water conservation is not only a prerequisite for integrating carbon sequestration from these projects into carbon trading markets or for voluntary emission reduction, and represents a crucial measure in supporting the "carbon peak, carbon neutralization" strategy. These measures may provide a theoretical basis for comprehensive soil and water conservation management policy in the future.
Methods We collected numerous literature retrieval with the keywords of "soil and water conservation" "carbon sink" and "measurement, monitoring and assessment" in the Web of Science, ScienceDirect, Springer and China National Knowledge Infrastructure (CNKI) databases. Representative literatures were selected for integration in the previous studies by the end of 2022. Specifically, we summarized the development potential of carbon sinks based on relevant policies and research findings under the "carbon peak and carbon neutralization" strategy. We clarified the concept, application, evaluation, and certification system of measuring soil and water conservation carbon sinks.
Results 1) Carbon sequestration measurement and monitoring in soil and water conservation involve the investigation and monitoring of the net carbon sink quantity within a certain area. This is done by surveying and monitoring changes in carbon storage, greenhouse gas emissions within the boundaries, and the relevant data required for leakage. These data are then archived and used to construct empirical models for simulation and estimation. The main methodologies include field surveys, micrometeorological methods, remote sensing techniques, among others. 2) The quantification and monitoring of carbon sequestration in soil and water conservation are inherent requirements for serving the "dual carbon strategy." They serve as essential foundations for soil and water conservation planning and contribute to the intrinsic driving force for enhancing ecological service functions, which are vital for implementing the "two-carbon" strategy, water conservation planning, endogenous power, and various application scenarios such as carbon trading, ecological enrichment, and investment mechanisms. 3) Strengthening the construction of soil and water conservation carbon sink assessment, classification management, and certification system is crucial. Improving carbon sink investigation and monitoring technology and methods will provide theoretical and technical support for accurately assessing soil and water conservation carbon sinks, ultimately contributing to the goal of carbon neutrality.
Conclusions Overall, this study points out that the measurement and monitoring system for soil and water conservation holds substantial long-term development potential. This includes improving the development methodology, establishing assessment indices, continuously exploring the growth potential of soil and water conservation carbon sinks, enhancing the diversity of soil and water conservation measures, expanding investment channels, improving the trading mechanism, and promoting the participation of soil and water conservation carbon sinks in carbon market trading.