高级检索+

干热河谷燥红土坡面水分时空分布特征及其对覆被类型的响应

Spatiotemporal distribution characteristics of moisture on dry red soil slope in dry-hot valley and its response to cover type

  • 摘要: 土壤水分是干热河谷地区植被恢复的限制性因子。为探讨元谋干热河谷区典型植被覆盖模式下燥红土坡面土壤水分的时空分布特征,于云南省元谋金雷水土保持示范园内选取农地、灌草地、乔灌草地和裸地对照为研究对象,通过测定小区0~100 cm土层土壤含水量,结合地统计法对其进行分析。结果表明:1)元谋干热河谷地区干旱少雨,雨季土壤含水量为旱季的4.22~4.95倍,土壤水分随土层深度的增加呈活跃度降低的趋势,旱季不同植被覆盖模式同一土层水分活跃程度差异不大,速变层、活跃层多集中在0~40 cm范围内;在雨季则呈现出较大差异,灌草地和乔灌草样地雨季土壤水分活跃度较强。2)土壤含水量高值区均表现为由旱季到雨季,逐渐向深层土壤转移的现象。裸地土壤含水量在各土壤层分布相对均匀,其余植被覆盖模式均表现出不同程度高值区集中的特点。3)裸地土壤含水量表现为坡底>坡中>坡顶,植被覆盖小区除旱季农地、旱季灌草地外,均表现为坡顶>坡中>坡底的特点。在干热河谷地区,植被覆盖能够协调土壤水分的时空分布差异,有效改善土壤水环境。

     

    Abstract:
    Background Soil moisture is the limiting factor of vegetation restoration in dry-hot valley. It is of great practical significance to study the spatiotemporal distribution of soil moisture in this region. Yuanmou is located in the middle and upper reaches of the Jinsha River. It is a typical dry-hot valley area of the Jinsha River basin. Exploring the spatiotemporal distribution of soil moisture in Yuanmou helps to provide data support for vegetation restoration in dry-hot valley.
    Methods In the Yuanmou Jinlei Soil and Water Conservation Demonstration Garden in Yunnan province, the runoff plots in farmland, shrub-grass land, arbor-shrub-grass land, and bare land were selected as the research objects, and samples were placed at the slope of each runoff plot at 0, 10, and 20 m from the top of the slope. Soil moisture content data of 10, 20, 40, 60, 80, and 100 cm soil layers were collected twice a month with a TDR moisture analyzer, and the collected data were analyzed with geostatistics.
    Results 1) The dry-hot valley area of Yuanmou was drought and less rain, and the soil moisture content in the rainy season was 4.22-4.95 times that of the dry season. With the increase of soil depth, the soil moisture activity decreased. In dry season, there was no significant difference in soil moisture activity between different vegetation restoration modes and the same soil layer, and the fast-changing layer and active layer were mostly concentrated in the range of 0-40 cm; but the soil moisture of each soil layer showed great difference, and the soil moisture activity of shrub-grass land and arbor-shrub-grass land was strong in the rainy season. 2) The high value of soil moisture content showed the phenomenon that from dry season to rainy season, it gradually transferred to deep soil. The soil moisture content of bare land was relatively uniform in each soil layer, and the types of residual vegetation cover showed the characteristics of concentration of high-value areas in different degrees. 3) The soil moisture content of bare land was expressed as slope bottom > slope middle > slope top, and the vegetation-covered plots had the characteristics of slope top > slope middle > slope bottom except for dry season agricultural land and dry season irrigated grassland.
    Conculsions In dry-hot valleys, different vegetation cover may lead to the reduction of soil moisture activity in dry season and promote soil moisture retention. In the rainy season, precipitation is guided to the deep soil by enhancing infiltration and other plant functions, thus coordinating the spatiotemporal distribution of soil moisture and effectively improving the soil water environment.

     

/

返回文章
返回