Abstract:
Background The Loess Plateau is the largest and most concentrated loess area in the world. In order to reduce the sediment load, a large number of check dams have been constructed. The researches of check dams in the soil erosion on the Loess Plateau have attracted widespread attention; however, they have seldom been studied systematically.
Methods In this study, bibliometric analysis and visualization were used to understand the research status of the research of check dams in the soil erosion on Loess Plateau and to assist researchers in establishing future research directions. The core collection of the Web of Science (WOS) was used as the data source. The search terms included the following: TS (Topic Search)=((erosion* or soil erosion* or soil loss* or sediment*) and (check dam* or check-dam or dam*) and (loess plateau*)), and a total of 234 related studies were retrieved. In our study, 212 research papers and reviews selected from WOS were imported into CiteSpace for analysis. Moreover, Excel 2017 was used to analyze the scientific research output. We have examined these topics from the publication outputs, the cooperation between authors and institutions, the evolution of keywords, and cocitation analysis of references.
Results The results showed that the number of articles issued increased rapidly in recent years. Additionally, the number continuously shows a trend of growth in the future. Institute of Soil and Water Conservation, Chinese Academy Science, Northwest A&F University, and Xi'an University of Technology were the most active institutions with the most publications. Regarding authors, MU Xingmin, ZHAO Guangju, GAO Peng and FANG Nufang were the core authors in this field. The keywords "runoff", "sediment load", "impact", "climate change", "soil organic carbon", "soil and water conservation", "deposition", "precipitation", "vegetation", "model", "sediment source", "cs 137" and "fingerprinting" precented higher frequency in the network of co-occurring keywords, and based on keyword evolution analysis, we concluded that researches mainly focused on the application of WATEM/SEDEM model, isotope Tracer Technology, calculation of sediment production modules, sediment reduction benefits of check dams and influence of check dam on the relationship between water and sediment in multiple time scales. Clustering analysis divided the citation into seven clusters, namely WATEM/SEDEM, isotopes, specific sediment yield, multi-temporal scale, arid region, flow-sediment relationship and fingerprinting. Accordingly, we concluded that sediment reduction benefits of check dam construction, sediment source tracing methods, environmental effects of check dam construction, and the mechanism of sediment reduction in check dam trenches were the hot research fields in the past 10 years.
Conclusions Check dams are very important for soil and water conservation in the Loess Plateau. It is necessary for scholars to strengthen the depth of research on sediment reduction and environmental effects of check dams.