高级检索+

外源NO对转基因白桦外源基因表达及DNA甲基化的影响

孙丰坤, 李思达, 李吉祥, 陈晓慧, 曾凡锁

孙丰坤, 李思达, 李吉祥, 陈晓慧, 曾凡锁. 外源NO对转基因白桦外源基因表达及DNA甲基化的影响[J]. 植物研究, 2017, 37(6): 870-875. DOI: 10.7525/j.issn.1673-5102.2017.06.010
引用本文: 孙丰坤, 李思达, 李吉祥, 陈晓慧, 曾凡锁. 外源NO对转基因白桦外源基因表达及DNA甲基化的影响[J]. 植物研究, 2017, 37(6): 870-875. DOI: 10.7525/j.issn.1673-5102.2017.06.010
SUN Feng-Kun, LI Si-Da, LI Ji-Xiang, CHEN Xiao-Hui, ZENG Fan-Suo. Effects of Exogenous Nitric Oxide on Exogenous Gene Expression and DNA Methylation in Transgenic Birch[J]. Bulletin of Botanical Research, 2017, 37(6): 870-875. DOI: 10.7525/j.issn.1673-5102.2017.06.010
Citation: SUN Feng-Kun, LI Si-Da, LI Ji-Xiang, CHEN Xiao-Hui, ZENG Fan-Suo. Effects of Exogenous Nitric Oxide on Exogenous Gene Expression and DNA Methylation in Transgenic Birch[J]. Bulletin of Botanical Research, 2017, 37(6): 870-875. DOI: 10.7525/j.issn.1673-5102.2017.06.010

外源NO对转基因白桦外源基因表达及DNA甲基化的影响

基金项目: 

中央高校基本科研业务费专项资金项目(2572014DA04);国家自然科学基金项目(J1210053,31200463)

详细信息
    作者简介:

    孙丰坤(1989-),男,硕士研究生,主要从事植物基因工程方面的研究。

    通讯作者:

    曾凡锁

  • 中图分类号: S792.153

Effects of Exogenous Nitric Oxide on Exogenous Gene Expression and DNA Methylation in Transgenic Birch

Funds: 

The central university basic research business expenses special fund project(2572014DA04)

  • 摘要: 为探讨外源NO诱导转基因白桦外源基因表达与基因组DNA甲基化之间的关系,本研究分析了NO供体硝普钠(sodium nitroprusside,SNP)对转基因白桦愈伤组织中外源基因BGT转录的影响,并对此过程中基因组DNA甲基化水平、甲基转移酶基因DRM、MET表达量及生理生化指标进行研究。结果表明:2 mmol·L-1SNP处理后,转基因白桦防御酶活性、丙二醛(MDA)含量显著升高,表明高浓度NO对白桦细胞正常生命活动产生了伤害;甲基转移酶DRM和MET基因上调表达,基因组DNA甲基化水平由10.6%增加到16.5%,外源基因BGT表达量在6 h时显著增加,3 d时仅为对照的0.46倍,说明转基因白桦外源BGT基因的表达对高浓度NO响应明显且受基因组甲基化水平的影响。本研究揭示了转基因白桦外源BGT基因和甲基转移酶MET、DRM基因对高浓度NO的响应模式,分析了基因组甲基化水平及生理生化特征的变化,为转基因植物生长发育的表观遗传调控和外源基因表达影响机制的研究奠定基础。
    Abstract: In order to investigate the relationship between transgene expression and the methylation of genomic DNA induced by 2 mmol·L-1 SNP in Transgenic birch, the effect of SNP(sodium nitroprusside) on the expression of exogenous BGT, methyltransferase gene DRM, MET and the level of DNA methylation were determined in transgenic birch callus. The activities of defense enzymes and the MDA(malondialdehyde) content in transgenic birch were increased significantly, which indicated high concentration of NO had harm on the normal life of birch cells. The methyltransferase DRM and MET genes were up-regulated and the methylation level of genomic DNA was increased from 10.6% to 16.5%. The transcription level of BGT was improved at 6 h and only 0.46 folds of the control at 3 d, which suggested the expression of exogenous BGT gene in transgenic brich was affected by high concentration of NO and the level of genomic methylation. The results revealed the response patterns of exogenous gene and methyltransferase gene and determined the genomic methylation level and physiological and biochemical characteristics to the high concentration of NO in birch, which will provide some references for further study of epigenetic regulation and regulation of exogenous gene expression in transgenic plants.
  • [1]

    . Beligni M V,Lamattina L. Is nitric oxide toxic or protective?[J]. Trends in Plant Science,1999,4(8):299-300.

    [2]

    . Kaya C,Ashraf M. Exogenous application of nitric oxide promotes growth and oxidative defense system in highly boron stressed tomato plants bearing fruit[J]. Scientia Horticulturae,2015,185:43-47.

    [3] . 关艳龙. 一氧化氮及一氧化碳参与植物逆境响应的机理研究[D]. 北京:中国科学院大学,2014.

    Guan Y L. The study about the mechanism of Nitric Oxide and Carbon Monoxide responding to enviromental stress[D]. Beijing:University of Chinese Academy of Sciences,2014.

    [4]

    . Domingos P,Prado A M,Wong A,et al. Nitric oxide:a multitasked signaling gas in plants[J]. Molecular Plant,2015,8(4):506-520.

    [5]

    . Duan X H,Li X N,Ding F,et al. Interaction of nitric oxide and reactive oxygen species and associated regulation of root growth in wheat seedlings under zinc stress[J]. Ecotoxicology and Environmental Safety,2015,113:95-102.

    [6] . 张艳艳,章文华,薛丽,等. 一氧化氮在植物生长发育和抗逆过程中的作用研究进展[J]. 西北植物学报,2012,32(4):835-842.

    Zhang Y Y,Zhang W H,Xue L,et al. Advance on NO function in Plant Growth,development and abiotic stress tolerance[J]. Acta Botanica Boreali-Occidentalia Sinica,2012,32(4):835-842.

    [7] . 冯奇志. 非生物胁迫诱导植物表观遗传变异研究:(一)外源一氧化氮(NO)诱导的高粱DNA甲基化变异和表型变异;(二)盐碱胁迫诱导水稻DNA甲基化变异[D]. 长春:东北师范大学,2012. Feng Q Z. Abiotic stress-induced epigenetic alterations in plants:1. Alteration of DNA methylation and phenotypic changes in sorghum(Sorghum bicolor L.) induced by exogenous nitric oxide;2. Methylation alternations in rice(Oryza sativa L.) induced by the salt and alkaline stress[D]. Changchun:Northeast Normal University,2012.
    [8] . 王艺雯. SO2诱导拟南芥DNA甲基化变异过程中H2O2和NO的作用[D]. 太原:山西大学,2012. Wang Y W. Role of H2O2 and NO in SO2-induced alteration of DNA methylation in Arabidopsis[D]. Taiyuan:Shanxi University,2012.
    [9]

    . Fu X,Kohli A,Twyman R M,et al. Alternative silencing effects involve distinct types of non-spreading cytosine methylation at a three-gene,single-copy transgenic locus in rice[J]. Molecular and General Genetics MGG,2000,263(1):106-118.

    [10]

    . Ochiai H,Harashima H,Kamiya H. Intranuclear disposition of exogenous DNA in vivo:silencing,methylation and fragmentation[J]. FEBS Letters,2006,580(3):918-922.

    [11] . 王晓凤. 低温胁迫和激素对外源基因表达及愈伤组织防御酶活性的影响[D]. 哈尔滨:东北林业大学,2011.

    Wang X F. The effect of low temperature and hormones on expression of foreign genes and callus defensive enzyme activity[D]. Harbin:Northeast Forestry University,2011.

    [12] . 李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社,2000:55-56.

    Li H S. Principles and techniques of plant physiological biochemical experiment[M]. Beijing:Higher Education Press,2000:55-56.

    [13] . 陈建勋,王晓峰. 植物生理学实验指导:2版[M]. 广州:华南理工大学出版社,2006:72-73.

    Chen J X,Wang X F. Experimental instruction of plant physiology:2nd ed[M]. Guangzhou:South China University of Technology Press,2006:72-73.

    [14] . 薛应龙. 植物生理学实验手册[M]. 上海:上海科学技术出版社,1985:191-192.

    Xue Y L. Laboratory manual of plant physiology[M]. Shanghai:Shanghai Science and Technology Press,1985:191-192.

    [15]

    . Durner J,Wendehenne D,Klessig D F. Defense gene induction in tobacco by nitric oxide,cyclic GMP,and cyclic ADP-ribose[J]. Proceedings of the National Academy of Sciences of the United States of America,1998,95(17):10328-10333.

    [16]

    . Vanlerberghe G C,Mclntosh L. Signals regulating the expression of the nuclear gene encoding alternative oxidase of plant mitochondria[J]. Plant Physiology,1996,111(2):589-595.

    [17]

    . Wang X Y,Shen W B,Xu L L. Exogenous nitric oxide alleviates osmotic stress-induced membrane lipid peroxidation in wheat seedling leaves[J]. Acta Photophysiologica Sinica,2004,30(2):195-200.

    [18]

    . Vasudevan D,Bovee R C,Thomas D D. Nitric oxide,the new architect of epigenetic landscapes[J]. Nitric Oxide,2016,59:54-62.

    [19]

    . Zubko E,Gentry M,Kunova A,et al. De novo DNA methylation activity of methyltransferase 1(MET1) partially restores body methylation in Arabidopsis thaliana[J]. The Plant Journal,2012,71(6):1029-1037.

    [20]

    . Boyko A,Kathiria P,Zemp F J,et al. Transgenerational changes in the genome stability and methylation in pathogen-infected plants:(virus-induced plant genome instability)[J]. Nucleic Acids Research,2007,35(5):1714-1725.

计量
  • 文章访问数:  1
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-15
  • 刊出日期:  2017-11-19

目录

    /

    返回文章
    返回