高级检索+

84K杨PagC3H3基因表达模式分析

Expression Pattern of PagC3H3 Gene in Populus alba×P.glandulosa

  • 摘要: 木质素作为木材的主要组成成分,通常是由3种单体聚合而成,在其生物合成过程中,共有10个酶家族参与负责将苯丙胺酸转化为单体木质素,其中C3H是在对-香豆酰辅酶A(p-coumaroyl CoA)到咖啡酰辅酶A(caffeoyl CoA)的羟基化过程和G/S单体形成中的关键控制酶类,探究PagC3H3基因表达模式,对于进一步了解该基因功能具有重要意义。该研究通过定量PCR对PagC3H3基因的组织特异性表达进行分析;克隆得到了长度为2 035 bp的PagC3H3的启动子序列,预测含有多个顺式作用元件;同时,将获得的PagC3H3的启动子序列构建植物表达载体pBI121-PagC3H3pro::GUS,进行拟南芥瞬时转化,结果显示PagC3H3基因在84K杨的根、中部茎节和基部茎节中的表达量较高;瞬时转化拟南芥,GUS染色表明:在下胚轴和根中GUS活性较强,由此推测PagC3H3基因在木质素合成过程中发挥作用。

     

    Abstract: As the main component of wood, lignin is usually polymerized from three monomers. During its biosynthesis, a total of ten enzyme families are involved in the conversion of phenylalanine to monomeric lignin, of which C3H is the key control enzymes in the hydroxylation process of p-coumaroyl CoA to caffeoyl CoA and in the formation of G/S monomer. Exploring the expression pattern of PagC3H3 gene is of great significance for further understanding of the function of this gene. In this study, the tissue-specific expression of PagC3H3 gene was analyzed by quantitative PCR; the promoter sequence of PagC3H3 with a length of 2 035 bp was cloned, and it was predicted to contain multiple cis-acting elements. At the same time, the promoter sequence of PagC3H3 was constructed to construct a plant expression vector pBI121-PagC3H3pro::GUS for transient transformation of Arabidopsis thaliana. The expression of PagC3H3 gene was higher in the roots, middle stem segments and basal stem segments of Populus alba×P. grandulos; transient transformation of A. thaliana showed that GUS activity was stronger in hypocotyls and roots, suggesting that PagC3H3 gene plays a role in lignin synthesis.

     

/

返回文章
返回