高级检索+

植被控制对人工更新紫椴幼树根系性状的影响

杨立学, 刘士林, 付瀚萱, 周思雨, 刘会锋, 申方圆

杨立学, 刘士林, 付瀚萱, 周思雨, 刘会锋, 申方圆. 植被控制对人工更新紫椴幼树根系性状的影响[J]. 植物研究, 2024, 44(2): 267-278.
引用本文: 杨立学, 刘士林, 付瀚萱, 周思雨, 刘会锋, 申方圆. 植被控制对人工更新紫椴幼树根系性状的影响[J]. 植物研究, 2024, 44(2): 267-278.
YANG Li-xue, LIU Shi-lin, FU Han-xuan, ZHOU Si-yu, LIU Hui-feng, SHEN Fang-yuan. Effects of Vegetation Control on Root Traits of Artificial Regeneration of Tilia amurensis Saplings[J]. Bulletin of Botanical Research, 2024, 44(2): 267-278.
Citation: YANG Li-xue, LIU Shi-lin, FU Han-xuan, ZHOU Si-yu, LIU Hui-feng, SHEN Fang-yuan. Effects of Vegetation Control on Root Traits of Artificial Regeneration of Tilia amurensis Saplings[J]. Bulletin of Botanical Research, 2024, 44(2): 267-278.

植被控制对人工更新紫椴幼树根系性状的影响

基金项目: 

国家重点研发课题省级资金资助项目(GX18B031)

中央高校基本科研业务费专项资金项目(2572020DR05,2572019CP16)

黑龙江头雁创新团队计划项目(森林资源高效培育技术研发团队)

详细信息
    作者简介:

    杨立学(1973—),男,教授,主要从事森林培育学研究

    通讯作者:

    申方圆,E-mail:shuke9197@126.com

  • 中图分类号: S792.36

Effects of Vegetation Control on Root Traits of Artificial Regeneration of Tilia amurensis Saplings

  • 摘要: 全光条件下紫椴(Tilia amurensis)更新困难,植被控制通过改变光照条件和土壤质量能够促进目的树种生长,研究植被控制强度对紫椴幼树根系性状和土壤因子的影响,为紫椴人工林培育提供支撑。以株行距为1.5 m×1.5 m的紫椴人工林(5年生)为对象,设置不同植被控制强度:幼树半径75 cm内所有灌草去除(T75)、半径50 cm范围灌草去除(T50)、半径30 cm范围灌草去除(T30)和不去除灌草(CK),测定不同植被控制强度下紫椴幼树吸收根和运输根的形态学性状、全量养分和非结构性碳水化合物等指标及土壤理化性质,揭示植被控制对根系性状和土壤因子的影响。植被控制显著改变了紫椴幼树所处环境中光照强度,其中,T75处理下光照强度最大,光照强度随着植被控制强度减弱而显著降低(P<0.05)。植被控制均显著降低了土壤全碳、全氮、速效氮和有效磷含量。随着植被控制强度的减弱,细根的直径、碳磷比、可溶性糖和淀粉含量均减小,比表面积、比根长、全碳、全氮和全磷含量均增加。土壤因子对紫椴幼树吸收根和运输根根系性状的变异的解释度分别为43.2%和37.9%。植被控制强度越大,紫椴幼树获得的光照强度越大,紫椴幼树根系形态、化学计量和生理特征随植被控制强度的变化均发生适应性改变,通过提高紫椴根系比表面积、比根长、全碳、全氮和全磷含量以增强幼树对低光条件的适应。植被控制强度变化下光照条件和土壤因子的改变可能是解释紫椴幼树根系性状变化的两个主要因素。
    Abstract: Since the regeneration of Tilia amurensis is difficult under full light conditions, and vegetation control can promote the growth of target species by changing light conditions and soil quality. In order to provide the support for the cultivation of T. amurensis, the effects of vegetation control intensity on root traits and soil factors of seedlings were investigated. T. amurensis monocultures(Five-year-old) with inter-row and intra-row spaces of 1.5 m×1.5 m were used as materials, and vegetation control treatments with different intensities T30, T50 and T75(clearing vegetation in the radius of 30, 50, 75 cm around T. amurensis seedlings) and control treatment(CK) were set. The morphological traits, total nutrient content, and non-structural carbon content in the absorptive roots and transport roots of T. amurensis seedlings, as well as soil variables were measured under different treatments, and the effects of vegetation control on root traits and soil conditions were revealed.Vegetation control significantly changed the light intensity in the environment of T. amurensis seedlings, among which the light intensity under T75 treatment was the maximum, and the light intensity decreased with the weakening of vegetation control intensity(P<0.05). Vegetation control significantly reduced the contents of total carbon, total nitrogen, available nitrogen, and available phosphorus in the soil. With the decrease of vegetation control intensity, the fine root diameter, carbon to phosphorus ratio, soluble sugar and starch contents decreased, while the specific surface area, specific root length, total carbon, total nitrogen and total phosphorus contents increased. Soil variables factors to the variation of root traits for absorptive roots and transport roots were 43.2% and 37.9%, respectively. The greater the vegetation control intensity, the greater the light intensity obtained by T. amurensis saplings, and the root morphology, stoichiometry and physiological traits of T. amurensis saplings took adaptive changes with the change of vegetation control intensity. The root specific surface area, specific root length, total carbon, total nitrogen and total phosphorus contents were increased to enhance the adaptability to low light conditions. The changes of light conditions and soil factors under vegetation control might be the two main factors to explain the root trait changes of T. amurensis saplings.
  • [1] 盛炜彤.关于我国人工林长期生产力的保持[J].林业科学研究,2018,31(1):1-14.

    SHENG W T.On the maintenance of long-term productivity of plantation in China[J]. Forest Research,2018,31(1):1-14.

    [2] 任骏,李建安,胡孔飞,等.油茶新造林杂草发生规律与防除技术[J].经济林研究,2017,35(4):177-184.

    REN J,LI J A,HU K F,et al.Occurrence law and control technology of weeds in new afforestation of Camellia oleifera[J].Nonwood Forest Research,2017,35(4):177-184.

    [3]

    DE LOMBAERDE E,BLONDEEL H,BAETEN L,et al.Light,temperature and understorey cover predominantly affect early life stages of tree seedlings in a multifactorial mesocosm experiment[J]. Forest Ecology and Management,2020,461:117907.

    [4]

    MCCORMACK M L,DICKIE I A,EISSENSTAT D M,et al.Redefining fine roots improves understanding of belowground contributions to terrestrial biosphere processes[J].New Phytologist,2015,207(3):505-518.

    [5]

    VALVERDE-BARRANTES O J.Dissecting how fine roots function[J].New Phytologist,2022,233(4):1539-1541.

    [6]

    PREGITZER K S,DEFOREST J L,BURTON A J,et al.Fine root architecture of nine north american trees[J].Ecological Monographs,2002,72(2):293-309.

    [7]

    GUO D L,XIA M X,WEI X,et al.Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species[J]. New Phytologist,2008,180(3):673-683.

    [8]

    JACKSON R B,CALDWELL M M.The scale of nutrient heterogeneity around individual plants and its quantification with geostatistics[J].Ecology,1993,74(2):612-614.

    [9] 李婧,洪宗文,熊仕臣,等.华西雨屏区不同林龄柳杉人工林的根系形态和碳氮磷化学计量特征[J].四川农业大学学报,2023,41(2):257-265.

    LI J,HONG Z W,XIONG S C,et al.The root morphology and C∶N∶P stoichiometric characteristics of Cryptomeria japonica var.sinensis plantations at different ages in rainy area of western China[J].Journal of Sichuan Agricultural University,2023,41(2):257-265.

    [10] 李晓清,代仕高,龙汉利,等.桢楠种源幼苗细根形态和生物量研究[J].热带亚热带植物学报,2016,24(2):208-214.

    LI X Q,DAI S G,LONG H L,et al.Fine root morphology and biomass of Phoebe zhennan provenance seedlings[J].Journal of Tropical and Subtropical Botany,2016,24(2):208-214.

    [11] 陈菊艳,龙海燕,邓伦秀.遮光对野鸦椿幼苗生长和光合生理特性的影响[J].西部林业科学,2021,50(2):19-27.

    CHEN J Y,LONG H Y,DENG L X.Effects of shading on growth and photosynthetic characteristics of Euscaphis japonica seedlings[J].Journal of West China Forestry Science,2021,50(2):19-27.

    [12] 闫兴富,刘建利,贝盏临,等.不同光强条件下柠条锦鸡儿的种子萌发和幼苗生长特征[J].生态学杂志,2015,34(4):912-918.

    YAN X F,LIU J L,BEI Z L,et al.Characteristics of seed germination and seedling growth of Caragana korshinskii under different light intensities[J]. Chinese Journal of Ecology,2015,34(4):912-918.

    [13] 吴小健,李秉钧,颜耀,等.不同地理种源杉木细根形态及生态化学计量特征[J].森林与环境学报,2023,43(2):113-122.

    WU X J,LI B J,YAN Y,et al.Fine root morphology and ecological stoichiometric characteristics of Cunninghamia lanceolata from different provenances[J].Journal of Forest and Environment,2023,43(2):113-122.

    [14] 张玲,张东来.遮荫条件下黄檗生长和生理响应的性别差异研究[J].植物研究,2020,40(5):735-742.

    ZHANG L,ZHANG D L. Gender differences in growth and physiological respond of Phellodendron amurense Rupr.in condition of overshadow[J].Bulletin of Botanical Research,2020,40(5):735-742.

    [15] 徐程扬.不同光环境下紫椴幼树树冠结构的可塑性响应[J].应用生态学报,2001,12(3):339-343.

    XU C Y.Response of structural plasticity of Tilia amurensis sapling crowns to different light conditions[J].Chinese Journal of Applied Ecology,2001,12(3):339-343.

    [16] 陈婕,毛子军,马立祥,等.蒙古栎和紫椴幼苗对光环境转变的光合作用响应[J].植物研究,2008,28(4):471-476.

    CHEN J,MAO Z J,MA L X,et al.Response of photosynthetic capacity and chlorophyll fluorescence in Quercus mongolica and Tilia amurensis seedlings after light intensity transfer[J].Bulletin of Botanical Research,2008,28(4):471-476.

    [17] 徐程扬,张晶,刘强,等.紫椴幼树叶片的光合作用特征[J].东北林业大学学报,2001,29(2):38-43.

    XU C Y,ZHANG J,LIU Q,et al. Leaf photosynthetic characteristics of Tilia amurensis seedling[J].Journal of Northeast Forestry University,2001,29(2):38-43.

    [18] 刘兴,杨晓,赵丹,等.遮光对紫椴幼苗光合特性的影响研究[J].新疆农业大学学报,2019,42(1):35-42.

    LIU X,YANG X,ZHAO D,et al.Study on the effect of light-shading on photosynthetic characteristics of Tilia amurensis Rupr. seedlings[J].Journal of Xinjiang Agricultural University,2019,42(1):35-42.

    [19] 许旸,谷加存,董雪云,等.海南岛4个热带阔叶树种前5级细根的形态、解剖结构和组织碳氮含量[J].植物生态学报,2011,35(9):955-964.

    XU Y,GU J C,DONG X Y,et al.Fine root morphology,anatomy and tissue nitrogen and carbon contents of the first five orders in four tropical hardwood species in Hainan Island,China[J].Chinese Journal of Plant Ecology,2011,35(9):955-964.

    [20] 闫媛媛,郭琪,管俊泽,等.红松和水曲柳叶生态化学计量及养分重吸收特征的地理变异[J].应用生态学报,2023,34(4):977-984.

    YAN Y Y,GUO Q,GUAN J Z,et al.Geographical variation of ecological stoichiometry and nutrient resorption in leaves of Pinus koraiensis and Fraxinus mandshurica[J].Chinese Journal of Applied Ecology,2023,34(4):977-984.

    [21] 祁琳,郭龙梅,刘尤德,等.刺槐幼苗非结构性碳水化合物对NaCl胁迫的动态响应[J].林业科学,2022,58(1):32-42.

    QI L,GUO L M,LIU Y D,et al.Dynamic responses of non-structural carbohydrates in Robinia pseudoacacia seedlings to NaCl stress[J]. Scientia Silvae Sinicae,2022,58(1):32-42.

    [22]

    MIOTTO Y E,COSTA C TDA,OFFRINGA R,et al.Effects of light intensity on root development in a D-root growth system[J].Frontiers in Plant Science,2021,12:778382.

    [23] 徐立清,崔东海,王庆成,等.张广才岭西坡次生林不同生境胡桃楸幼树根系构型及细根特征[J].应用生态学报,2020,31(2):373-380.

    XU L Q,CUI D H,WANG Q C,et al.Root architecture and fine root characteristics of Juglans mandshurica saplings in different habitats in the secondary forest on the west slope of Zhangguangcailing,China[J].Chinese Journal of Applied Ecology,2020,31(2):373-380.

    [24]

    WAHL S,RYSER P. Root tissue structure is linked to ecological strategies of grasses[J]. New phytologist,2000,148(3):459-471.

    [25]

    VINCENT C D,GREGORY P J. Effects of temperature on the development and growth of winter wheat roots[J].Plant and Soil,1989,119(1):99-110.

    [26]

    PAGE V,BLÖSCH R M,FELLER U.Regulation of shoot growth,root development and manganese allocation in wheat(Triticum aestivum)genotypes by light intensity[J].Plant Growth Regulation,2012,67(3):209-215.

    [27]

    SARAN P L,SINGH S,SOLANKI V H,et al.Impact of shade-net intensities on root yield and quality of Asparagus racemosus:a viable option as an intercrop[J].Industrial Crops and Products,2019,141:111740.

    [28] 任浩,高国强,马耀远,等.不同年龄红松根系氮素吸收及其与根形态和化学性状的关系[J].北京林业大学学报,2021,43(10):65-72.

    REN H,GAO G Q,MA Y Y,et al.Root nitrogen uptake and its relationship with root morphological and chemical traits in Pinus koraiensis at different ages[J].Journal of Beijing Forestry University,2021,43(10):65-72.

    [29] 王凯,齐悦彤,那恩航,等.基于器官-凋落叶-土壤生态化学计量特征的樟子松和赤松人工林养分利用策略[J].生态学杂志,2023,42(2):274-281.

    WANG K,QI Y T,NA E H,et al.Nutrient use strategies of Pinus sylvestris var. mongolica and Pinus densiflora plantations based on ecological stoichiometry in organlitter-soil systems[J].Chinese Journal of Ecology,2023,42(2):274-281.

    [30] 智西民,王梦颖,牛畔青,等.遮荫对青桐幼苗生长性状与化学计量特征的影响[J].生态学杂志,2021,40(3):664-671.

    ZHI X M,WANG M Y,NIU P Q,et al.Effects of shading on the growth indices and stoichiometric characteristics of Firmiana platanifolia seedlings[J].Chinese Journal of Ecology,2021,40(3):664-671.

    [31] 高然,董希斌,曲杭峰,等.抚育强度对天然针阔混交林细根化学计量及根系呼吸的影响[J].东北林业大学学报,2022,50(11):43-46.

    GAO R,DONG X B,QU H F,et al.Effects of tending intensity on stoichiometry and root respiration of fine roots in natural coniferous and broad-leaved mixed forest[J].Journal of Northeast Forestry University,2022,50(11):43-46.

    [32] 熊静,虞木奎,成向荣,等.光照和氮磷供应比对木荷生长及化学计量特征的影响[J].生态学报,2021,41(6):2140-2150.

    XIONG J,YU M K,CHENG X R,et al.Effects of light and N-P supply ratios on growth and stoichiometric of Schima superba[J].Acta Ecologica Sinica,2021,41(6):2140-2150.

    [33] 陈超,罗光宇,金则新,等.光照强度对景宁木兰幼苗叶片形态结构、化学计量特征和非结构性碳水化合物的影响[J].生态学杂志,2023,42(6):1307-1315.

    CHEN C,LUO G Y,JIN Z X,et al.Effects of light intensities on leaf morphological structure,stoichiometry and non-structural carbohydrates of Magnolia sinostellata seedlings[J].Chinese Journal of Ecology,2023,42(6):1307-1315.

    [34] 李金霞,朱亚男,孙小妹,等.氮磷添加对黑果枸杞(Lycium ruthenicum)营养器官非结构性碳水化合物特征的影响[J].中国沙漠,2021,41(2):200-211.

    LI J X,ZHU Y N,SUN X M,et al.Effects of nitrogen and phosphorus addition on non-structural carbohydrate properties of vegetative organs in Lycium ruthenicum[J].Journal of Desert Research,2021,41(2):200-211.

    [35] 李晓庆,闫冬佳,任金培,等.5个藤本月季品种生长和非结构性碳分配对遮阴的响应[J].山西农业科学,2021,49(9):1055-1060.

    LI X Q,YAN D J,REN J P,et al.Response of growth and nonstructural carbon distribution to shading in five vine rose varieties[J].Journal of Shanxi Agricultural Sciences,2021,49(9):1055-1060.

    [36]

    BENGOUGH A G,BRANSBY M F,HANS J,et al.Root responses to soil physical conditions; growth dynamics from field to cell[J]. Journal of Experimental Botany,2006,57(2):437-447.

    [37]

    TANAKA K,HASHIMOTO S. Plant canopy effects on soil thermal and hydrological properties and soil respiration[J].Ecological Modelling,2006,196(1/2):32-44.

    [38]

    HUANGFU C H,HUI D F,QI X X,et al.Plant interactions modulate root litter decomposition and negative plant-soil feedback with an invasive plant[J].Plant and Soil,2019,437:179-194.

    [39] 谷加存,王东男,夏秀雪,等.功能划分方法在树木细根生物量研究中的应用:进展与评述[J].植物生态学报,2016,40(12):1344-1351.

    GU J C,WANG D N,XIA X X,et al. Applications of functional classification methods for tree fine root biomass estimation:Advancements and synthesis[J]. Chinese Journal of Plant Ecology,2016,40(12):1344-1351.

    [40] 贾林巧,陈光水,张礼宏,等.常绿阔叶林外生和丛枝菌根树种细根形态和构型性状对氮添加的可塑性响应[J].应用生态学报,2021,32(2):529-537.

    JIA L Q,CHEN G S,ZHANG L H,et al.Plastic responses of fine root morphology and architecture traits to nitrogen addition in ecto-mycorrhizal and arbuscular mycorrhizal tree species in an evergreen broadleaved forest[J].Chinese Journal of Applied Ecology,2021,32(2):529-537.

  • 期刊类型引用(0)

    其他类型引用(1)

计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-10-06
  • 刊出日期:  2024-03-19

目录

    /

    返回文章
    返回