Design and test of feed pneumatic conveying system
-
摘要: 为了解决现代规模化生猪养殖场饲料输送过程中饲料输送能力差、输送距离短、破碎率高以及疫病防控等问题,笔者以满足年出栏万头猪的饲料供给能力为目标,设计了饲料气力输送系统及试验装置,即选用了额定压力为100 kPa、流量为12.5 m3/min和功率为37 kW的罗茨风机,排量为0.01 m3/r的旋转供料器,管径为83 mm的DN80镀锌钢管输送管道,筒体直径(Φ)为500 mm的旋风分离器,以及袋滤式除尘器,并对试验装置的饲料输送能力、管道压降、破碎率等输送性能进行验证。结果表明:试验装置输送能力的相对误差小于8.33%,输送能力的提高随系统管道压降的增加近似呈线性关系,饲料平均破碎率为11.50%;试验装置在工作过程中无管道粘料及弯管堵塞现象,各部件均工作正常,系统运行稳定可靠,性能指标满足设计要求。说明本试验设计猪饲料的气力输送系统可满足现代规模化生猪养殖。Abstract: In order to solve the problems of poor feeding capacity, short feeding distance, high breakage rate as well as epidemic prevention and control in the feeding process of modern large-scale pig farms, in this paper, the feed pneumatic conveying system and test device were designed by author to meet the feed supply capacity of ten thousand pigs per year. Therefore, roots blower with rated pressure of 100 kPa, flow rate of 12.5 m~3/min and power of 37 kW, rotary feeder with displacement of 0.01 m~3/r, DN80 galvanized steel pipe with a pipe diameter of 83 mm for transporting pipes, cyclone separator with cylinder diameter of 500 mm and bag filter dust collectors were selected. The feed conveying capacity, pressure drop in pipes, and breakage rate of the test device were tested. The results showed that the relative error of the conveying capacity of the experimental device was less than 8.33%. With increasing of system pressure drop, the conveying capacity basically increased linearly. In the meanwhile, the average breakage rate of feed was 11.50%. There was no pipe sticking or elbow blockage during the working process. All the parts work normally, the system runs stably and reliably, also the performance indexes meet the design requirements. The research results indicated that the pneumatic conveying of pig feed designed in this experiment could meet the requirements of modern large-scale pig breeding.
-
Keywords:
- feed /
- pneumatic conveying /
- conveying capacity of system /
- pipeline pressure drop /
- breakage rate
-
-
[1] 刘婷,周杨.我国不同规模生猪养殖成本效率、影响因素及区域差异分析[J].黑龙江畜牧兽医,2020(14):22-26. [2] 谷政,赵慧敏.基于L-V模型的中国生猪产业规模化结构演进研究[J].黑龙江畜牧兽医,2019(16):13-19. [3] 王善高,王琪,徐章星,等.中国生猪养殖环境效率的时空演进与收敛性分析[J].黑龙江畜牧兽医,2020(10):7-11,22. [4] 李永祥.气力输送弯管的磨损及磨损机理研究[J].河南工业大学学报(自然科学版),2005,26(01):68-70,74. [5] 王晓明,黄永华,沈铁宏,等.5HYL-35塔式谷物烘干机气力循环输送系统设计[J].中国农机化学报,2020,41(07):81-86. [6] 郭飞扬,金诚谦,俞康,等.大豆联合收获机气力卸粮装置的设计与试验[J].中国农业大学学报,2020,25(10):147-157. [7] 文桂林,何智翔,卿启湘,等.粮库气力输送机供料器设计与优化[J].计算机仿真,2016,33(02):254-260. [8] 乌兰图雅,青林,王春光.揉碎玉米秸秆螺旋-气力耦合输送装置设计[J].农业工程学报,2019,35(06):29-38. [9] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.规模猪场建设:GB/T 17824.1—2008[S].北京:中国标准出版社,2008. [10] 耿振中.炭黑密相气力输送系统的设计和试验研究[D].青岛:青岛科技大学,2007. [11] 周乃如,朱凤德.气力输送原理与设计计算[M].郑州:河南科学技术出版社,1981. [12] 李诗久,周晓君.气力输送理论与应用[M].北京:机械工业出版社,1992. [13] 黄远东,周乃如,朱凤德.面粉正压输送中叶轮式供料器的两相流压损研究[J].农业机械学报,2005,36(05):72-74. [14] 樊保兴.粉煤灰正压气力输送对压缩空气质量的要求[J].水利电力机械,1995(03):28-30. [15] 张乾熙,贾明生,侯冬尽.组合式煤粉气力供料输送装置实验研究[J].冶金能源,2017,36(05):20-23,35. [16] 魏飞,张林海,侯书林.秸秆物料除杂及气力输送系统的设计[J].农机化研究,2013,35(08):80-83. [17] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.低压流体输送用焊接钢管:GB/T 3091—2008[S].北京:中国标准出版社,2008. [18] SAYDA A F,TAYLOR J H.Modeling and control of three-phase gravity separators in oil production facilities[C].New York:IEEE,2007.
[19] 陈涛.散粮卡车取样器自动控制系统设计研究[D].郑州:河南工业大学,2014. [20] 王肖.撞击式气固分离器颗粒运动特性数值模拟和试验研究[D].杭州:浙江大学,2017. [21] A.C.霍夫曼,L.E.斯坦因.旋风分离器-原理、设计和工程应用[M].北京:化学工业出版社,2004. [22] 刘忠文.旋风分离器简捷设计计算方法[J].化工设备设计,1995(06):19-22. [23] 石增斌.布袋除尘器技术及其应用[J].煤炭技术,2006(01):123-125. [24] 彭宗祥.连续密相气力输送系统设计及实验研究[D].青岛:青岛科技大学,2013. [25] 方薪晖,安海泉,刘臻,等.煤粉掺混煤液化残渣萃余物的气力输送压降特性研究[J].煤炭学报,2020,45(04):1510-1518. -
期刊类型引用(4)
1. 钱怀源,刘浩宇,黄天赐,李卓,谢方平,邬备. 生猪粥状饲料的黏附及静态沉淀特性. 云南农业大学学报(自然科学). 2025(01): 93-101 . 百度学术
2. 潘博鑫,王敏杰,魏兆成,郭明龙,高文华,关子民. 3D打印模具钢粉末处理系统的设计与模拟分析. 模具技术. 2024(01): 1-13 . 百度学术
3. 杨惠永,高彦玉,韩颖思,周昆乐. 猪场多级饲料输送系统分析及回料现象探讨. 饲料研究. 2023(13): 141-145 . 百度学术
4. 朱立学,官金炫,张世昂,莫冬炎,杨尘宇,黄伟锋. 基于深度学习的肉鸽精准饲喂机器人的研制与试验. 机电产品开发与创新. 2022(05): 6-10 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 0
- HTML全文浏览量: 0
- PDF下载量: 0
- 被引次数: 6