Wu Huarui, Li Qingxue, Miao Yisheng, Song Yuling. Agricultural internet of things data reconstruction based on K-nearest neighbor reconstruction algorithm improved by regularization penalty and spatio-temporal constraints[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(14): 183-189. DOI: 10.11975/j.issn.1002-6819.2019.14.023
Citation: Wu Huarui, Li Qingxue, Miao Yisheng, Song Yuling. Agricultural internet of things data reconstruction based on K-nearest neighbor reconstruction algorithm improved by regularization penalty and spatio-temporal constraints[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(14): 183-189. DOI: 10.11975/j.issn.1002-6819.2019.14.023

Agricultural internet of things data reconstruction based on K-nearest neighbor reconstruction algorithm improved by regularization penalty and spatio-temporal constraints

  • The internet of things (IoT) technology has been widely applied in the agriculture production monitoring. Accurate decision-making and environment regulation can be made based on monitoring results. However, data loss in agriculture wireless sensor networks is common due to noise, collision, unreliable link, and unexpected damage, which greatly reduces the quality of data acquisition and then affects the results of decision analysis. In order to solve this problem, this paper proposed a data reconstruction method based on K nearest neighbor with regularization penalty constraints (KNN-RP). Firstly, the ridge regression method was used in order to regularize the least square factor. Secondly, there was a problem that it is difficult to get a unique solution due to the algorithmic error while the data matrix is not full-column rank. This could be improved by introducing a penalty term into the method. The combination of 1-norm and 2-norm could ensure the sparsity of the matrix as well as prevent the loss function from over-fitting. It is suitable for high-dimensional agricultural WSN (wireless sensor network) data reconstruction with high noise. Furthermore, the definition of time and space constraint matrix was determined according to the temporal and spatial stability of perceptual data in agricultural IoT. Finally, the K value was determined by model training to achieve the better reconstruction performance. A cross-validate experiment was done to evaluate the algorithm performance according to the greenhouse data samples. KNN (K nearest neighbor), KNN-inverse and DT (delaunay triangulation) algorithms were chosen for the performance comparison. In the element random loss case, the overall reconstruction error rate of the 4 algorithms increased with the increasing of data loss rate. The KNN and KNN-inverse had higher error rate when the data loss rate above 60% compared with the other 2 algorithms. Besides, the performance of KNN-RP was superior to the DT algorithm in both high and low data loss rates. In the block loss case, the reconstruction error rates of the 4 algorithms were close to the element random loss case, but reconstruction error rates increased faster than the element random loss case while the data loss rate increased. In the block loss case, the overall performance of KNN-RP was better than KNN and KNN-inverse, but lower than that of DT algorithm when the data loss rate was above 60%. The K value had a significant influence on the performance of KNN-RP. The reconstruction error of KNN-RP decreased first and then increased with the increasing of K value. For the stable parameter like temperature, the reconstruction error rate was less affected by K value. On the contrast, the reconstruction error rates of humidity and lightness data were more affected by K value. The reason maybe the humidity and lightness data changed faster than temperature. Considering all 3 parameters, temperature, humidity and lightness, the optimal K value was between 6 and 8. In summary, KNN-RP algorithm could effectively reconstruct the missing errors in the agricultural IoT, especially in element random loss case. The proposed algorithm improves the quality of perceptual data in agricultural IoT monitoring and may provide reference for agricultural production decision-making.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return