Numerical simulation on water hammer in pressurized pipeline based on MIAB model
-
摘要: 为提高1D水锤模型对有压管道瞬变流预测精度,在传统1D恒定摩阻模型中引入额外的瞬时附加摩阻项,建立了改进的非恒定摩阻模型.利用2个模型分别对3种不同初始流速工况的水库-管道-阀门系统压力瞬变特性进行数值模拟,并对比了不同模型的预测精度.结果表明:恒定摩阻模型和非恒定摩阻模型的压力波在第1个周期内的压力变化预测值均与试验值较为接近.而在第1个压力波周期以后,二者在低流速工况预测的压力峰值与试验值误差分别为10.3%和4.7%,改进的非恒定摩阻模型预测精度大幅提高.对压力波传播特性的研究表明,压力波在系统内不同位置处的传播和反射特性存在明显不同:在1个水锤波周期内,压力波在水箱处受到压强差作用产生全负反射,而在阀门处由于微流段的速度变化为0,仅改变了方向.研究结果能够为有压管道的安全稳定运行和优化设计提供一定的参考.Abstract: In order to improve the predictive accuracy of 1D water hammer model for transient flow in pressurized pipelines, an additional transient friction term was introduced into the traditional 1D steady friction model and an improved unsteady friction model was developed. Using these two models, the pressure transient characteristics of a reservoir-pipeline-valve system were numerically simulated for three different steady-state initial flow velocity conditions. The predictive accuracy of the two models was compared. The results indicate that both the steady friction model and the improved unsteady friction model closely approximate the pressure variations in the first period of the pressure wave, in accordance with experimental values. However, after the first pressure wave period, the errors in predicting pressure peak values for low initial velocity conditions are 10.3% and 4.7% for the steady and unsteady friction models respectively. The improved unsteady friction model shows significantly enhanced predictive accuracy. Research into pressure wave propagation characteristics reveals distinct differences in wave propagation and reflection behavior at different locations in the system. During one water hammer period, pressure waves experience complete negative reflection at the reservoir due to pressure difference effects, while at the valve, the waves only change direction due to negligible velocity change in the micro-fluid section. These findings contribute valuable insights into the safe and stable operation as well as optimization design of pressurized pipelines.
-
-
[1] 李小周,朱满林,陶灿.空气阀型式对压力管道水锤防护的影响[J].排灌机械工程学报,2015,33(7):599-605.LI Xiaozhou,ZHU Manlin,TAO Can.Impacts of type of air valve on water hammer protection in pressurized pipelines[J].Journal of drainage and irrigation machi-nery engineering(JDIME),2015,33 (7):599-605.(in Chinese) [2] 方聪,邹军,刘冰,等.快速上浮脱险加压控制策略研究及实现[J].机械科学与技术,2016,35(11):1691-1697.FANG Cong,ZOU Jun,LIU Bing,et al.Exploring and implementing control strategy of a pressurizing control system for fast buoyancy escape[J].Mechanical science and technology for aerospace engineering,2016,35(11):1691-1697.(in Chinese) [3] 姚青云,李志敏.事故停泵水锤对压力管道的影响[J].排灌机械,2006,24(6):45-48.YAO Qingyun,LI Zhimin.Effect of water hammer to pressure pipes for pump accidents[J].Drainage and irrigation machinery,2006,24(6):45-48.(in Chinese) [4] ADAMKOWSKI A,JANICKI W,LEWANDOWSKI M.Measurements of discharge through a pump-turbine in both flow directions using volumetric gauging and pres-sure-time methods[J].Energies,2020,13(18):4706.
[5] 金锥,姜乃昌,汪兴华,等.停泵水锤及其防护[M].北京:中国建筑工业出版社,2004. [6] KORBAR R,VIRAG Z,ŠAVAR M,et al.Truncated method of characteristics for quasi-two-dimensional water hammer model[J].Journal of hydraulic engineering,2014,140(6):04014013.
[7] WU Guohong,DUAN Xiangyu,ZHU Jianghui,et al.Investigations of hydraulic transient flows in pressurized pipeline based on 1D traditional and 3D weakly compressible models[J].Journal of hydroinformatics,2021,23(2):231-248.
[8] ZIELKE W.Frequency-dependent friction in transient pipe flow[J].Transactions of ASME journal of basic engineering,1968,90(1):109.
[9] VARDY A E,BROWN J M B.Transient turbulent friction in smooth pipe flows[J].Journal of sound and vibration,2003,259(5):1011-1036.
[10] VARDY A E,BROWN J M B.Transient turbulent friction in fully rough pipe flows[J].Journal of sound and vibration,2004,270(1/2):233-257.
[11] GHIDAOUI M S,MANSOUR S.Efficient treatment of the Vardy-Brown unsteady shear in pipe transients[J].Jour-nal of hydraulic engineering,2002,128(1):102-112.
[12] BRUNONE B,GOLIA U M,GRECE M.Effects of two-dimensionality on pipe transients modeling[J].Journal of hydraulic engineering,1995,121 (12):906-912.
[13] URBANOWICZ K,ZARZYCKI Z,KUDZMA S.Univer-sal weighting function in modeling transient cavitating pipe flow[J].Journal of theoretical and applied mecha-nics,2012,50(4):889-902.
[14] VITKOVSKY J P,BERGANT A,SIMPSON A R,et al.Systematic evaluation of one-dimensional unsteady friction models in simple pipelines[J].Journal of hydraulic engineering,2006,132(7):696-708.
[15] MITOSE K,MARE K,SZYMKIEWIC Z,et al.Reservoir influence on pressure wave propagation in steel pipes[J].Journal of hydraulic engineering,2016,142(8):06016007.
[16] MENICONI S,BRUNONE B,FERRANTE M,et al.Transient hydrodynamics of in-line valves in viscoelastic pressurized pipes:long-period analysis[J].Experiments in fluids,2012,53:265-275.
[17] BRUNONE B,BERNI A.Wall shear stress in transient turbulent pipe flow by local velocity measurement[J].Journal of hydraulic engineering,2010,136(10):716-726.
[18] BRITO M,SANCHES P,FERREIRA R M L,et al.Experimental study of the transient flow in a coiled pipe using PIV[J].Journal of hydraulic engineering,2017,143(3):04016087.
[19] DOORNE C W H,WESTERWEEL J.Measurement of laminar,transitional and turbulent pipe flow using Stereoscopic-PIV[J].Experiments in fluids,2007,42:259-279.
[20] EGGELS J G M,UNGER F,WEISS M H,et al.Fully developed turbulent pipe flow:a comparison between direct numerical simulation and experiment[J].Journal of fluid mechanics,1994,268(1):175-209.
[21] MARTINS N M C,SOARES A K,RAMOS H M,et al.CFD modeling of transient flow in pressurized pipes[J].Computers and fluids,2016,126:129-140.
-
期刊类型引用(2)
1. 舒依娜,刘兆峰,夏修萍,邓朝阳,陆燕清,田永薪,胡垠盈,周领. 排水管网泵群系统动态摩阻水锤仿真模拟. 水利水电科技进展. 2025(03): 32-39 . 百度学术
2. 张炜,胡侃,孙雨欣,笪跃武,张晓磊,胡淑圆,陈渊. 大直径城市供水管道水锤作用监测与计算方法研究. 给水排水. 2024(09): 142-148 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 1
- HTML全文浏览量: 0
- PDF下载量: 0
- 被引次数: 5